File size: 6,730 Bytes
9915c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm

import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback

from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
from scipy.spatial import ConvexHull


if sys.version_info[0] < 3:
    raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")

def load_checkpoints(config_path, checkpoint_path, cpu=False):

    with open(config_path) as f:
        config = yaml.load(f)

    generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
                                        **config['model_params']['common_params'])
    if not cpu:
        generator.cuda()

    kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
                             **config['model_params']['common_params'])
    if not cpu:
        kp_detector.cuda()
    
    if cpu:
        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    else:
        checkpoint = torch.load(checkpoint_path)
 
    generator.load_state_dict(checkpoint['generator'])
    kp_detector.load_state_dict(checkpoint['kp_detector'])
    
    if not cpu:
        generator = DataParallelWithCallback(generator)
        kp_detector = DataParallelWithCallback(kp_detector)

    generator.eval()
    kp_detector.eval()
    
    return generator, kp_detector


def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True, cpu=False):
    with torch.no_grad():
        predictions = []
        source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        if not cpu:
            source = source.cuda()
        driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
        kp_source = kp_detector(source)
        kp_driving_initial = kp_detector(driving[:, :, 0])

        for frame_idx in tqdm(range(driving.shape[2])):
            driving_frame = driving[:, :, frame_idx]
            if not cpu:
                driving_frame = driving_frame.cuda()
            kp_driving = kp_detector(driving_frame)
            kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
                                   kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
                                   use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
            out = generator(source, kp_source=kp_source, kp_driving=kp_norm)

            predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
    return predictions

def find_best_frame(source, driving, cpu=False):
    import face_alignment

    def normalize_kp(kp):
        kp = kp - kp.mean(axis=0, keepdims=True)
        area = ConvexHull(kp[:, :2]).volume
        area = np.sqrt(area)
        kp[:, :2] = kp[:, :2] / area
        return kp

    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
                                      device='cpu' if cpu else 'cuda')
    kp_source = fa.get_landmarks(255 * source)[0]
    kp_source = normalize_kp(kp_source)
    norm  = float('inf')
    frame_num = 0
    for i, image in tqdm(enumerate(driving)):
        kp_driving = fa.get_landmarks(255 * image)[0]
        kp_driving = normalize_kp(kp_driving)
        new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
        if new_norm < norm:
            norm = new_norm
            frame_num = i
    return frame_num

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--config", required=True, help="path to config")
    parser.add_argument("--checkpoint", default='vox-cpk.pth.tar', help="path to checkpoint to restore")

    parser.add_argument("--source_image", default='sup-mat/source.png', help="path to source image")
    parser.add_argument("--driving_video", default='sup-mat/source.png', help="path to driving video")
    parser.add_argument("--result_video", default='result.mp4', help="path to output")
 
    parser.add_argument("--relative", dest="relative", action="store_true", help="use relative or absolute keypoint coordinates")
    parser.add_argument("--adapt_scale", dest="adapt_scale", action="store_true", help="adapt movement scale based on convex hull of keypoints")

    parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true", 
                        help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)")

    parser.add_argument("--best_frame", dest="best_frame", type=int, default=None,  
                        help="Set frame to start from.")
 
    parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.")
 

    parser.set_defaults(relative=False)
    parser.set_defaults(adapt_scale=False)

    opt = parser.parse_args()

    source_image = imageio.imread(opt.source_image)
    reader = imageio.get_reader(opt.driving_video)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()

    source_image = resize(source_image, (256, 256))[..., :3]
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
    generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu)

    if opt.find_best_frame or opt.best_frame is not None:
        i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
        print ("Best frame: " + str(i))
        driving_forward = driving_video[i:]
        driving_backward = driving_video[:(i+1)][::-1]
        predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions = predictions_backward[::-1] + predictions_forward[1:]
    else:
        predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
    imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)