Spaces:
Running
Running
File size: 2,139 Bytes
e8d28ee b26b8bd e8d28ee b876f7f 2a427d7 c7c8ed9 b26b8bd c7c8ed9 b876f7f c7c8ed9 3467c38 c7c8ed9 b26b8bd b876f7f c7c8ed9 bdc7710 c7c8ed9 b876f7f c7c8ed9 b876f7f b26b8bd b876f7f b26b8bd b876f7f c7c8ed9 b26b8bd e8d28ee b876f7f e8d28ee b876f7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct" , "HPAI-BSC/Llama3-Aloe-8B-Alpha")
# client = InferenceClient("Xenova/gpt-4o")
# client = InferenceClient("mistralai/mamba-codestral-7B-v0.1")
# client = InferenceClient("deepseek-ai/DeepSeek-Coder-V2-Instruct")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.your name is GameApp ICG , you are a code expert . output everything in .json format . ", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.5, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |