File size: 6,520 Bytes
908edf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import streamlit as st
import sparknlp
import os
import pandas as pd

from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text

# Page configuration
st.set_page_config(
    layout="wide", 
    initial_sidebar_state="auto"
)

# CSS for styling
st.markdown("""

    <style>

        .main-title {

            font-size: 36px;

            color: #4A90E2;

            font-weight: bold;

            text-align: center;

        }

        .section {

            background-color: #f9f9f9;

            padding: 10px;

            border-radius: 10px;

            margin-top: 10px;

        }

        .section p, .section ul {

            color: #666666;

        }

    </style>

""", unsafe_allow_html=True)

@st.cache_resource
def init_spark():
    return sparknlp.start()

@st.cache_resource
def create_pipeline(model):
    documentAssembler = DocumentAssembler()\
          .setInputCol("text")\
          .setOutputCol("document")

    sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
          .setInputCols(["document"])\
          .setOutputCol("sentence")

    tokenizer = Tokenizer()\
          .setInputCols(["sentence"])\
          .setOutputCol("token")

    ner_converter = NerConverter()\
          .setInputCols(["sentence", "token", "ner"])\
          .setOutputCol("ner_chunk")


    if model == 'xlm_roberta_large_token_classifier_masakhaner':
      tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_masakhaner", "xx")\
          .setInputCols(["sentence",'token'])\
          .setOutputCol("ner")

    else:
      tokenClassifier = DistilBertForTokenClassification.pretrained("distilbert_base_token_classifier_masakhaner", "xx")\
          .setInputCols(["sentence",'token'])\
          .setOutputCol("ner")

    nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
    return nlpPipeline

def fit_data(pipeline, data):
  empty_df = spark.createDataFrame([['']]).toDF('text')
  pipeline_model = pipeline.fit(empty_df)
  model = LightPipeline(pipeline_model)
  result = model.fullAnnotate(data)
  return result

def annotate(data):
    document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"]
    annotated_words = []
    for chunk, label in zip(chunks, labels):
        parts = document.split(chunk, 1)
        if parts[0]:
            annotated_words.append(parts[0])
        annotated_words.append((chunk, label))
        document = parts[1]
    if document:
        annotated_words.append(document)
    annotated_text(*annotated_words)

# Set up the page layout
st.markdown('<div class="main-title">Recognize entities in 10 African languages</div>', unsafe_allow_html=True)
st.markdown("""

<div class="section">

    <p>This model carries out Name Entity Recognition on 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian, Pidgin, Swahilu, Wolof, and Yorùbá).</p>

</div>

""", unsafe_allow_html=True)

# Sidebar content
model = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["xlm_roberta_large_token_classifier_masakhaner", "distilbert_base_token_classifier_masakhaner"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

language = st.sidebar.selectbox(
    "Choose the pretrained model",
    ["Amharic", "Hausa", "Igbo", "Kinyarwanda", "Luganda", "Nigerian", "Pidgin", "Swahilu", "Wolof", "Yorùbá"],
    help="For more info about the models visit: https://sparknlp.org/models"
)

try:
    labels_set = set()
    for i in results['NER Chunk'].values:
        labels_set.add(results["NER Label"][i])
        labels_set = list(labels_set)

    labels = st.sidebar.multiselect("Entity labels", options=labels_set, default=list(labels_set))
        
    NER_labs = ['PER', 'ORG', 'LOC', 'DATE']
    NER_exp = ['People, including fictional.', 'Companies, agencies, institutions, etc.', 'Countries, cities, states.', 'Date, Year']

    NER_dict = dict(zip(NER_labs, NER_exp))

    show_exp = st.sidebar.checkbox("Explain NER Labels", value=True)
    if show_exp:
        t_ner_k = []
        t_ner_v = []
    for t_lab in labels_set:
        if t_lab in NER_dict:
            t_ner_k.append(t_lab)
            t_ner_v.append(NER_dict[t_lab])
    tdf = pd.DataFrame({"NER": t_ner_k, "Meaning": t_ner_v})
    tdf.index=['']*len(t_ner_k)
    st.sidebar.table(tdf)
except:
    pass

# Reference notebook link in sidebar
link = """

<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/Ner_masakhaner.ipynb">

    <img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>

</a>

"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)

# Load examples
folder_path = f"inputs/{language}"
examples = [
    lines[1].strip() 
    for filename in os.listdir(folder_path) 
    if filename.endswith('.txt') 
    for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()] 
    if len(lines) >= 2
]

selected_text = st.selectbox("Select an example", examples)
custom_input = st.text_input("Try it with your own Sentence!")

text_to_analyze = custom_input if custom_input else selected_text

st.subheader('Full example text')
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)

# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, text_to_analyze)

# Display matched sentence
st.subheader("Processed output:")

results = {
    'Document': output[0]['document'][0].result,
    'NER Chunk': [n.result for n in output[0]['ner_chunk']],
    "NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']]
}

annotate(results)

with st.expander("View DataFrame"):
    df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']})
    df.index += 1
    st.dataframe(df)