File size: 8,622 Bytes
9e339c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a8175
9e339c2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import tensorflow as tf
import tensorflow_datasets as tfds

tf.keras.utils.set_random_seed(1234)


class PositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, position, d_model, **kwargs):
        super(PositionalEncoding, self).__init__(**kwargs)
        self.position = position
        self.d_model = d_model
        self.pos_encoding = self.positional_encoding(position, d_model)

    def get_config(self):
        config = super(PositionalEncoding, self).get_config()
        config.update(
            {
                "position": self.position,
                "d_model": self.d_model,
            }
        )
        return config

    def get_angles(self, position, i, d_model):
        angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
        return position * angles

    def positional_encoding(self, position, d_model):
        angle_rads = self.get_angles(
            position=tf.range(position, dtype=tf.float32)[:, tf.newaxis],
            i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :],
            d_model=d_model,
        )
        # apply sin to even index in the array
        sines = tf.math.sin(angle_rads[:, 0::2])
        # apply cos to odd index in the array
        cosines = tf.math.cos(angle_rads[:, 1::2])

        pos_encoding = tf.concat([sines, cosines], axis=-1)
        pos_encoding = pos_encoding[tf.newaxis, ...]
        return tf.cast(pos_encoding, tf.float32)

    def call(self, inputs):
        return inputs + self.pos_encoding[:, : tf.shape(inputs)[1], :]

def scaled_dot_product_attention(query, key, value, mask):
    """Calculate the attention weights."""
    matmul_qk = tf.matmul(query, key, transpose_b=True)

    # scale matmul_qk
    depth = tf.cast(tf.shape(key)[-1], tf.float32)
    logits = matmul_qk / tf.math.sqrt(depth)

    # add the mask to zero out padding tokens
    if mask is not None:
        logits += mask * -1e9

    # softmax is normalized on the last axis (seq_len_k)
    attention_weights = tf.nn.softmax(logits, axis=-1)

    output = tf.matmul(attention_weights, value)

    return output

def create_padding_mask(x):
    mask = tf.cast(tf.math.equal(x, 0), tf.float32)
    # (batch_size, 1, 1, sequence length)
    return mask[:, tf.newaxis, tf.newaxis, :]

def create_look_ahead_mask(x):
    seq_len = tf.shape(x)[1]
    look_ahead_mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
    padding_mask = create_padding_mask(x)
    return tf.maximum(look_ahead_mask, padding_mask)


class MultiHeadAttentionLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, **kwargs):
        assert d_model % num_heads == 0
        super(MultiHeadAttentionLayer, self).__init__(**kwargs)
        self.num_heads = num_heads
        self.d_model = d_model

        self.depth = d_model // self.num_heads

        self.query_dense = tf.keras.layers.Dense(units=d_model)
        self.key_dense = tf.keras.layers.Dense(units=d_model)
        self.value_dense = tf.keras.layers.Dense(units=d_model)

        self.dense = tf.keras.layers.Dense(units=d_model)

    def get_config(self):
        config = super(MultiHeadAttentionLayer, self).get_config()
        config.update(
            {
                "num_heads": self.num_heads,
                "d_model": self.d_model,
            }
        )
        return config

    def split_heads(self, inputs, batch_size):
        inputs = tf.keras.layers.Lambda(
            lambda inputs: tf.reshape(
                inputs, shape=(batch_size, -1, self.num_heads, self.depth)
            )
        )(inputs)
        return tf.keras.layers.Lambda(
            lambda inputs: tf.transpose(inputs, perm=[0, 2, 1, 3])
        )(inputs)

    def call(self, inputs):
        query, key, value, mask = (
            inputs["query"],
            inputs["key"],
            inputs["value"],
            inputs["mask"],
        )
        batch_size = tf.shape(query)[0]

        # linear layers
        query = self.query_dense(query)
        key = self.key_dense(key)
        value = self.value_dense(value)

        # split heads
        query = self.split_heads(query, batch_size)
        key = self.split_heads(key, batch_size)
        value = self.split_heads(value, batch_size)

        # scaled dot-product attention
        scaled_attention = scaled_dot_product_attention(query, key, value, mask)
        scaled_attention = tf.keras.layers.Lambda(
            lambda scaled_attention: tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
        )(scaled_attention)

        # concatenation of heads
        concat_attention = tf.keras.layers.Lambda(
            lambda scaled_attention: tf.reshape(
                scaled_attention, (batch_size, -1, self.d_model)
            )
        )(scaled_attention)

        # final linear layer
        outputs = self.dense(concat_attention)

        return outputs

model = tf.keras.models.load_model(
    "model/model1.h5",
    custom_objects={
        "PositionalEncoding": PositionalEncoding,
        "MultiHeadAttentionLayer": MultiHeadAttentionLayer,
    },
    compile=False,
)

tokenizer = tfds.deprecated.text.SubwordTextEncoder.load_from_file('model/model1')

MAX_LENGTH = 40
# Define start and end token to indicate the start and end of a sentence
START_TOKEN, END_TOKEN = [tokenizer.vocab_size], [tokenizer.vocab_size + 1]

# Vocabulary size plus start and end token
VOCAB_SIZE = tokenizer.vocab_size + 2

def evaluate(sentence):
    sentence = tf.expand_dims(
        START_TOKEN + tokenizer.encode(sentence) + END_TOKEN, axis=0
    )

    output = tf.expand_dims(START_TOKEN, 0)

    for i in range(MAX_LENGTH):
        predictions = model(inputs=[sentence, output], training=False)

        # select the last word from the seq_len dimension
        predictions = predictions[:, -1:, :]
        predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)

        # return the result if the predicted_id is equal to the end token
        if tf.equal(predicted_id, END_TOKEN[0]):
            break

        # concatenated the predicted_id to the output which is given to the decoder
        # as its input.
        output = tf.concat([output, predicted_id], axis=-1)

    return tf.squeeze(output, axis=0)


def predict(sentence):
    prediction = evaluate(sentence)
    predicted_sentence = tokenizer.decode(
        [i for i in prediction if i < tokenizer.vocab_size]
    )
    return predicted_sentence

def process_input(sentence, history):
    history.append(sentence)
    inp = " < ".join(history[-2:])
    print(inp)
    resp = predict(inp)
    history.append(resp)
    return ([(history[i], history[i+1]) for (i, x) in list(enumerate(history))[::2]], history)


with gr.Blocks() as demo:
    markdown = gr.Markdown(
        "# <center> Tmislit-97\n"
        "##### <center> By عبدالله ف. الغرابي \n"
        """

        \n<div id="header" align="center" style="margin-bottom:20px">

            <div id="header"><img src="https://media.discordapp.net/attachments/913886328863739944/1077559683688177684/photo_5436021961043066278_c.jpg" width="100" style="border-radius:50%"/></div>

            <div id="socials" style="display: flex; flow: right; justify-content: center; margin-top: 10px">

                <a href="https://www.instagram.com/abdullah.ghrabat/" style="margin-right: 20px">

                    <img src="https://img.shields.io/badge/Instagram-gray?logo=Instagram&logoColor=Orange&style=for-the-badge&backgroundColor=white" alt="Instagram"/>

                </a>

                <a href="https://t.me/abdullah_ghrabat">

                    <img src="https://img.shields.io/badge/Telegram-blue?logo=Telegram&logoColor=Orange&style=for-the-badge&backgroundColor=white" alt="Instagram"/>

                </a>

            </div>

        </div>\n

        """
        "\n<center> ذكاء اسطناعي مدرب من محادثات الكروب العام\n"
        "<center> مكون من"
        '<center>40% ذكاء'
        '<center>60% تمسلت\n'
    )
    chatbot = gr.Chatbot()
    state = gr.State([])

    with gr.Row():
        txt = gr.Textbox(show_label=False, placeholder="اكتب رسالتك هنا !").style(container=False)
    txt.submit(process_input, [txt, state], [chatbot, state])
    txt.submit(lambda :"", None, txt)

if __name__ == "__main__":
    demo.launch()