Spaces:
Running
Running
File size: 11,266 Bytes
1154abd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# ============================================
# LOCAL PC STUTTER DETECTION SETUP
# Run this on your local machine
# ============================================
import os
import numpy as np
import librosa
import torch
import torch.nn as nn
import transformers
from typing import List, Tuple
import warnings
warnings.filterwarnings('ignore')
# ============================================
# MODEL ARCHITECTURE (MUST MATCH TRAINING)
# ============================================
class ImprovedWav2VecClassifier(nn.Module):
"""Improved classifier matching training architecture."""
def __init__(self, hidden_dim=768, intermediate_dim=256, output_dim=2, dropout=0.3):
super().__init__()
# Load pre-trained Wav2Vec model
self.wav2vec = transformers.Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')
# Freeze Wav2Vec parameters
for param in self.wav2vec.parameters():
param.requires_grad = False
# Classification head
self.classifier = nn.Sequential(
nn.Linear(hidden_dim, intermediate_dim),
nn.BatchNorm1d(intermediate_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(intermediate_dim, intermediate_dim // 2),
nn.BatchNorm1d(intermediate_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(intermediate_dim // 2, output_dim)
)
def forward(self, x):
with torch.no_grad():
encoder_output = self.wav2vec(x).last_hidden_state
pooled_features = encoder_output.mean(dim=1)
return self.classifier(pooled_features)
# ============================================
# FEATURE EXTRACTOR
# ============================================
class Wav2VecFeatureExtractor:
"""Extract features from audio files."""
def __init__(self, model_name='facebook/wav2vec2-base', duration=3):
self.processor = transformers.Wav2Vec2FeatureExtractor.from_pretrained(model_name)
self.duration = duration
self.sample_rate = 16000
def extract_features(self, audio_data, sr):
try:
if sr != self.sample_rate:
audio_data = librosa.resample(audio_data, orig_sr=sr, target_sr=self.sample_rate)
features = self.processor(audio_data, sampling_rate=self.sample_rate, return_tensors='pt').input_values
return features.squeeze(0)
except Exception as e:
print(f"Error extracting features: {e}")
return None
# ============================================
# AUDIO PROCESSING FUNCTIONS
# ============================================
def load_audio_file(file_path: str) -> Tuple[np.ndarray, int]:
"""Load an audio file."""
try:
audio_data, sr = librosa.load(file_path, sr=None)
return audio_data, sr
except Exception as e:
raise Exception(f"Error loading audio file: {e}")
def segment_audio(audio_data: np.ndarray, sr: int, segment_duration: float = 3.0) -> List[np.ndarray]:
"""Split audio into fixed-duration segments."""
segment_samples = int(segment_duration * sr)
segments = []
for i in range(0, len(audio_data), segment_samples):
segment = audio_data[i:i + segment_samples]
if len(segment) >= sr: # At least 1 second
if len(segment) < segment_samples:
padding = segment_samples - len(segment)
segment = np.pad(segment, (0, padding), mode='constant')
segments.append(segment)
return segments
def pad_or_truncate_features(features: torch.Tensor, max_length: int = 32007) -> torch.Tensor:
"""Pad or truncate features to match expected input length."""
if features.size(0) < max_length:
padding = max_length - features.size(0)
features = torch.cat([features, torch.zeros(padding)], dim=0)
elif features.size(0) > max_length:
features = features[:max_length]
return features
# ============================================
# STUTTER DETECTOR CLASS
# ============================================
class ImprovedStutterDetector:
"""Stutter detector for all types: prolongations, blocks, repetitions, interjections."""
def __init__(self, model_path: str, device: str = None):
# Set device
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
print(f"Using device: {self.device}")
# Load model
print("Loading model...")
self.model = ImprovedWav2VecClassifier()
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
self.model.to(self.device)
self.model.eval()
print("β Model loaded successfully!")
# Initialize feature extractor
self.feature_extractor = Wav2VecFeatureExtractor(duration=3)
# Class names
self.class_names = ['No Stutter', 'Stutter (All Types)']
print("\nThis model detects ALL stutter types:")
print(" β’ Prolongations (ssssso)")
print(" β’ Blocks (getting stuck)")
print(" β’ Sound Repetitions (b-b-ball)")
print(" β’ Word Repetitions (I-I-I want)")
print(" β’ Interjections (um, uh)")
def analyze_audio_file(self, file_path: str, segment_duration: float = 3.0,
stutter_threshold: float = 0.5, show_probabilities: bool = True) -> dict:
"""Analyze an entire audio file for stuttering."""
print(f"\n{'='*70}")
print(f"ANALYZING: {os.path.basename(file_path)}")
print(f"{'='*70}")
# Load audio
audio_data, sr = load_audio_file(file_path)
duration = len(audio_data) / sr
print(f"π Audio duration: {duration:.2f} seconds")
# Segment audio
segments = segment_audio(audio_data, sr, segment_duration)
print(f"π Number of segments: {len(segments)}")
if len(segments) == 0:
return {'error': 'Audio too short for analysis (minimum 1 second required)'}
# Analyze each segment
results = []
stutter_count = 0
print(f"\n{'='*70}")
print("SEGMENT ANALYSIS")
print(f"{'='*70}")
for i, segment in enumerate(segments):
features = self.feature_extractor.extract_features(segment, sr)
if features is None:
continue
features = pad_or_truncate_features(features)
features = features.unsqueeze(0).to(self.device)
with torch.no_grad():
outputs = self.model(features)
probabilities = torch.softmax(outputs, dim=1)
predicted_class = torch.argmax(probabilities, dim=1).item()
confidence = probabilities[0][predicted_class].item()
no_stutter_prob = probabilities[0][0].item()
stutter_prob = probabilities[0][1].item()
is_stutter = stutter_prob >= stutter_threshold
results.append({
'segment': i + 1,
'prediction': self.class_names[predicted_class],
'confidence': confidence,
'is_stutter': is_stutter,
'no_stutter_probability': no_stutter_prob,
'stutter_probability': stutter_prob
})
if is_stutter:
stutter_count += 1
if show_probabilities:
status_emoji = "π΄" if is_stutter else "π’"
status_text = "STUTTER DETECTED" if is_stutter else "Clear"
print(f"{status_emoji} Segment {i+1}: {status_text}")
print(f" No Stutter: {no_stutter_prob:.2%} | Stutter: {stutter_prob:.2%}")
# Calculate statistics
total_segments = len(results)
stutter_percentage = (stutter_count / total_segments * 100) if total_segments > 0 else 0
print(f"\n{'='*70}")
print("FINAL RESULTS")
print(f"{'='*70}")
print(f"β Total segments analyzed: {total_segments}")
print(f"π΄ Segments with stutter: {stutter_count}")
print(f"π’ Segments without stutter: {total_segments - stutter_count}")
print(f"π Stuttering percentage: {stutter_percentage:.1f}%")
return {
'file_path': file_path,
'duration': duration,
'total_segments': total_segments,
'stutter_count': stutter_count,
'no_stutter_count': total_segments - stutter_count,
'stutter_percentage': stutter_percentage,
'segment_results': results
}
# ============================================
# SEVERITY ANALYSIS
# ============================================
def calculate_stutter_severity(results):
"""Calculate detailed stutter severity metrics."""
segment_results = results['segment_results']
stutter_probs = [seg['stutter_probability'] for seg in segment_results]
avg_prob = sum(stutter_probs) / len(stutter_probs)
max_prob = max(stutter_probs)
min_prob = min(stutter_probs)
# Count segments by severity
severe = sum(1 for p in stutter_probs if p > 0.6)
moderate = sum(1 for p in stutter_probs if 0.4 < p <= 0.6)
mild = sum(1 for p in stutter_probs if 0.2 < p <= 0.4)
minimal = sum(1 for p in stutter_probs if p <= 0.2)
# Calculate severity score as stutters / total segments
total_segments = results.get('total_segments', 0)
stutter_count = results.get('stutter_count', 0)
severity_score = stutter_count / total_segments if total_segments > 0 else 0.0
print(f"\n{'='*70}")
print("DETAILED SEVERITY ANALYSIS")
print(f"{'='*70}")
print(f"Average stutter probability: {avg_prob:.2%}")
print(f"Peak stutter probability: {max_prob:.2%}")
print(f"Minimum stutter probability: {min_prob:.2%}")
print(f"\nSegment Severity Breakdown:")
print(f" π΄ Severe (>70%): {severe} segments")
print(f" π Moderate (40-70%): {moderate} segments")
print(f" π‘ Mild (20-40%): {mild} segments")
print(f" π’ Minimal (<20%): {minimal} segments")
# Overall severity
if avg_prob < 0.15:
severity = "β Minimal or No Stuttering"
elif avg_prob < 0.35:
severity = "β οΈ Mild Stuttering"
elif avg_prob < 0.60:
severity = "β οΈ Moderate Stuttering"
else:
severity = "π΄ Significant Stuttering"
print(f"\nπ― Overall Assessment: {severity}")
print(f"π Severity Score: {severity_score:.2%} (stutters/total segments)")
return {
'average_probability': avg_prob,
'max_probability': max_prob,
'severity_level': severity,
'severity_score': severity_score,
'severe_segments': severe,
'moderate_segments': moderate,
'mild_segments': mild,
'minimal_segments': minimal
}
|