File size: 2,123 Bytes
0d4415a
 
6f2aef4
 
 
175b1a2
6f2aef4
0d4415a
 
 
 
 
6f2aef4
0d4415a
 
 
 
 
6f2aef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4415a
6f2aef4
 
 
 
 
 
 
 
 
 
 
 
0d4415a
 
 
 
6f2aef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
from transformers import pipeline
# from PIL import Image
# import requests
# import torch
# from diffusers import DiffusionPipeline
from SeoKeywordResearch import SeoKeywordResearch




def main():
    #Load models
    text_model_name = "EleutherAI/gpt-neo-1.3B"
    text_generator = pipeline("text-generation", model=text_model_name, tokenizer=text_model_name)
    st.title("AI Blog Post Generator")


    kws = st.checkbox('generate keywords')
    if kws:
        keyword_research = SeoKeywordResearch(
        query='artificial intelligence',
        api_key='1d86ba79731e5b3c038fb9f75715883cab027b2f7b41b61ba76d59ec3b9e252d',
        lang='en',
        country='us',
        domain='google.com')

        data = {
            'auto_complete': keyword_research.get_auto_complete(),
            'related_searches': keyword_research.get_related_searches(),
            'related_questions': keyword_research.get_related_questions(depth_limit=1)
        }


        # keyword_research.save_to_txt(data)
        keywords = keyword_research.print_data(data)
        all_keywords = keywords["auto_complete"] + keywords["related_searches"] + keywords["related_questions"]
        keywords = [kw for kw in all_keywords]
        st.text_input("Enter the title :")

    
    else :
            
        keywords = st.text_input("Enter relevant keywords (comma-separated):")
        keywords = [kw.strip() for kw in keywords.split(",")]
    # Button to generate blog post
    if st.button("Generate Blog"):
        if keywords:
            # Generate content based on keywords
            for keyword in keywords:
                generated_text = text_generator(keyword, max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
                st.subheader(keyword)
                st.write(generated_text)
        
        st.header('Conclusion')
        generated_text = text_generator(keywords[0], max_length=150, num_return_sequences=1, temperature=0.7)[0]['generated_text']
        st.subheader(keyword)
        st.write(generated_text)


if __name__ == "__main__":
    main()