File size: 9,157 Bytes
9d388a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score, davies_bouldin_score, calinski_harabasz_score
import plotly.express as px
st.set_page_config(layout="wide")
st.title("Student Behavior Clustering πβ¨")
st.write("This app performs clustering on student behavior data to identify patterns and segments of students.")
# Two option menus: App, About
tabs = ["App", "About"]
app_mode = option_menu(None, options=tabs, icons=["π", "β"], default_index=0, orientation="horizontal")
# --- Sidebar for Settings and File Upload ---
st.sidebar.header("Data and Clustering Settings")
# File Upload
uploaded_file = st.sidebar.file_uploader(
"Choose a CSV file or use default:", type=["csv"]
)
# Use a default dataset if no file is uploaded
if uploaded_file is None:
df = pd.read_csv("clustering_data.csv")
else:
df = pd.read_csv(uploaded_file)
# --- Data Preprocessing (Example: Handling Missing Values) ---
# Replace this with your specific data cleaning needs
df.fillna(df.mean(), inplace=True)
# --- Feature Engineering (Example) ---
df['engagement_score'] = (
df['attendance_rate'] * 0.5 +
df['test_average'] * 0.5
)
# Select features for clustering
features = df[['attendance_rate', 'test_average', 'engagement_score']]
# Standard Scaling
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
# Sidebar for Algorithm Selection and Parameter Tuning
st.sidebar.header("Clustering Settings")
algorithm = st.sidebar.selectbox(
"Select Algorithm:",
("KMeans", "DBSCAN", "Hierarchical")
)
# Default values for parameters
n_clusters_kmeans = 3
eps = 0.5
min_samples = 5
n_clusters_hierarchical = 3
linkage = 'ward'
# Parameter tuning section
with st.sidebar.expander("Algorithm Parameters"):
if algorithm == "KMeans":
n_clusters_kmeans = st.slider(
"Number of Clusters (K)", 2, 10, 3,
help="Number of clusters to form for KMeans."
)
elif algorithm == "DBSCAN":
eps = st.slider(
"Epsilon (eps)", 0.1, 2.0, 0.5, 0.1,
help="Maximum distance between two samples for one to be considered as in the neighborhood of the other for DBSCAN."
)
min_samples = st.slider(
"Min Samples", 2, 10, 5,
help="The number of samples in a neighborhood for a point to be considered as a core point for DBSCAN."
)
else: # Hierarchical
n_clusters_hierarchical = st.slider(
"Number of Clusters", 2, 10, 3,
help="Number of clusters to find for hierarchical clustering."
)
linkage = st.selectbox(
"Linkage", ['ward', 'complete', 'average', 'single'],
help="Which linkage criterion to use for hierarchical clustering."
)
# Function to perform clustering
def cluster_data(algo_name, **kwargs):
try:
if algo_name == "KMeans":
model = KMeans(n_clusters=kwargs.get('n_clusters', 3), random_state=42)
elif algo_name == "DBSCAN":
model = DBSCAN(eps=kwargs.get('eps', 0.5), min_samples=kwargs.get('min_samples', 5))
else: # Hierarchical
model = AgglomerativeClustering(
n_clusters=kwargs.get('n_clusters', 3),
linkage=kwargs.get('linkage', 'ward')
)
clusters = model.fit_predict(scaled_features)
return clusters
except Exception as e:
st.error(f"An error occurred during clustering: {e}")
return None
# Perform clustering
clusters = cluster_data(
algorithm,
n_clusters=n_clusters_kmeans if algorithm == "KMeans" else n_clusters_hierarchical,
eps=eps if algorithm == "DBSCAN" else 0.5,
min_samples=min_samples if algorithm == "DBSCAN" else 5,
linkage=linkage if algorithm == "Hierarchical" else "ward",
)
# THE APP CONTENT
if app_mode == "About":
st.write(
"""
## About
This app performs clustering on student behavior data to identify patterns and segments of students.
### Data
The dataset contains student information such as attendance rate, test average, and engagement score.
### Clustering Algorithms
- **KMeans:** Partitions data into K clusters based on feature similarity.
- **DBSCAN:** Density-based clustering to identify outliers and clusters of varying shapes.
- **Hierarchical:** Builds a tree of clusters to identify subgroups.
### Evaluation Metrics
- **Silhouette Score:** Measures how similar an object is to its cluster compared to other clusters.
- **Davies-Bouldin Index:** Computes the average similarity between each cluster and its most similar one.
- **Calinski-Harabasz Index:** Ratio of the sum of between-clusters dispersion and within-cluster dispersion.
### Cluster Profiling
- Parallel coordinates plot to visualize and compare clusters across multiple features.
### Interpretation of Clusters
- Provides insights into each cluster based on the average values of features.
"""
)
st.write(
"""
## How to Use
1. **Upload Data:** Upload your own CSV file or use the default dataset.
2. **Select Algorithm:** Choose between KMeans, DBSCAN, and Hierarchical clustering.
3. **Set Parameters:** Adjust the clustering parameters in the sidebar.
4. **Interpret Results:** Explore the clustered data, evaluation metrics, and cluster profiles.
"""
)
st.write(
"""
## Contact
If you have any questions or feedback, feel free to connect with me on:
- [LinkedIn](https://www.linkedin.com/in/abdellatif-laghjaj)
- [GitHub](https://www.github.com/abdellatif-laghjaj)
"""
)
elif app_mode == "App":
if clusters is not None:
df['cluster'] = clusters
# --- Display Clustered Data ---
st.subheader(f"Clustered Data using {algorithm}:")
st.dataframe(df)
# --- Evaluation Metrics ---
if len(set(clusters)) > 1:
silhouette_avg = silhouette_score(scaled_features, clusters)
db_index = davies_bouldin_score(scaled_features, clusters)
ch_index = calinski_harabasz_score(scaled_features, clusters)
st.subheader("Clustering Evaluation Metrics")
st.markdown(f"**Silhouette Score:** {silhouette_avg:.2f}", unsafe_allow_html=True)
st.markdown(f"**Davies-Bouldin Index:** {db_index:.2f}", unsafe_allow_html=True)
st.markdown(f"**Calinski-Harabasz Index:** {ch_index:.2f}", unsafe_allow_html=True)
else:
st.warning("Evaluation metrics are not applicable. Only one cluster found.")
# --- Interactive 3D Scatter Plot with Plotly ---
st.subheader("Interactive 3D Cluster Visualization")
fig = px.scatter_3d(
df,
x='attendance_rate',
y='test_average',
z='engagement_score',
color='cluster',
title=f"Student Clusters ({algorithm})",
labels={'attendance_rate': 'Attendance Rate',
'test_average': 'Test Average',
'engagement_score': 'Engagement Score'}
)
st.plotly_chart(fig)
# --- Cluster Profiling (Example using Plotly) ---
st.subheader("Cluster Profile Visualization")
st.write("The parallel coordinates plot is a way to visualize and compare clusters across multiple features.")
profile_features = ['attendance_rate', 'test_average', 'engagement_score']
cluster_means = df.groupby('cluster')[profile_features].mean().reset_index()
fig_profile = px.parallel_coordinates(
cluster_means,
color='cluster',
dimensions=profile_features,
title="Parallel Coordinates Plot for Cluster Profiles"
)
st.plotly_chart(fig_profile)
# --- Dynamic Interpretation of Clusters ---
st.subheader("Interpretation of Clusters")
for cluster_num in cluster_means['cluster']:
cluster_data = cluster_means[cluster_means['cluster'] == cluster_num]
st.write(f"**Cluster {cluster_num}:**")
for feature in profile_features:
st.write(f"- **{feature.replace('_', ' ').title()}:** {cluster_data[feature].values[0]:.2f}")
highest_feature = cluster_data[profile_features].idxmax(axis=1).values[0]
lowest_feature = cluster_data[profile_features].idxmin(axis=1).values[0]
st.write(f"This cluster has the highest average {highest_feature.replace('_', ' ')} "
f"and the lowest average {lowest_feature.replace('_', ' ')}.")
st.write("---")
# Additional insights based on cluster characteristics can be added here.
else:
st.warning("Please configure the clustering settings and run the algorithm first.")
|