File size: 2,295 Bytes
82f9e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch 
import torch.nn as nn
from torch.utils.data import Dataset

import json

class BilingualDataset(Dataset):
    def __init__(self, ds, tokenizer, seq_len):
        super().__init__()
        
        self.tokenizer = tokenizer
        self.seq_len = seq_len
        self.ds = ds
        self.stride = seq_len//2
        self.sos_token = torch.tensor([tokenizer.token_to_id('<s>')],dtype=torch.int64) 
        self.eos_token = torch.tensor([tokenizer.token_to_id('</s>')],dtype=torch.int64) 
        self.pad_token = torch.tensor([tokenizer.token_to_id('<pad>')],dtype=torch.int64) 
        self.user_token = torch.tensor([tokenizer.token_to_id('<user>')],dtype=torch.int64) 
        self.ai_token = torch.tensor([tokenizer.token_to_id('<ai>')],dtype=torch.int64) 
        
        self.data_tokens = []
        
        for text in self.ds:
            # text = text['instruction'] +" ### " + text['text'] + " \n" + text['output']
            # text = text['user'] +" ### " + text['ai']
            user_tokens = tokenizer.encode(text['instruction'] + " " + text['input']).ids
            ai_tokens = tokenizer.encode(text['output']).ids
            self.data_tokens.extend([self.user_token] + user_tokens + [self.ai_token] + ai_tokens+ [self.eos_token] )
        
    def __len__(self):
        return (len(self.data_tokens) - self.seq_len) // self.stride
    
    def __getitem__(self, index):
        
        input_tokens = torch.tensor(self.data_tokens[index*self.stride:(index*self.stride)+self.seq_len- 1]).tolist()
        
        input_tokens = [self.sos_token] + input_tokens + [self.pad_token]
        if len(input_tokens) < self.seq_len - 1:
            input_tokens+=[self.pad_token] * ((self.seq_len - 1 ) - len(input_tokens))
            
        input_tokens = torch.tensor(input_tokens)
        
        
        return {
            "input": input_tokens[:-1],
            # "input_mask": (input_tokens[:-1] != self.pad_token).unsqueeze(0).int() & causal_mask(input_tokens[:-1].size(0)), # (1, seq_len) & (1, seq_len, seq_len)
            "label":input_tokens[1:]                                        # ^ CONFUSION SYNTAX :)
        }
        
def causal_mask(size):
    mask = torch.triu(torch.ones(1,size,size), diagonal=1).type(torch.int)
    return mask == 0