File size: 4,585 Bytes
23c3153
 
 
 
 
 
 
 
 
 
 
 
 
71950a8
 
 
bf299de
71950a8
 
 
 
02edf9e
71950a8
 
a14ac5a
 
51a543e
1217d8b
 
51a543e
1217d8b
 
51a543e
 
df85b6e
1217d8b
 
 
 
 
 
df85b6e
 
 
 
 
60f71a4
 
df85b6e
 
 
 
 
 
4f40275
df85b6e
 
 
 
 
 
4f40275
df85b6e
a14ac5a
 
4f40275
 
a14ac5a
 
 
 
 
 
 
 
 
 
 
 
a34af3d
 
4f40275
 
 
 
 
 
 
 
 
 
 
 
60f71a4
 
 
 
 
4f40275
 
 
 
 
 
 
 
 
 
 
 
a34af3d
 
 
aa22372
 
 
60f71a4
 
 
aa22372
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
title: Whisper Webui
emoji: 
colorFrom: pink
colorTo: purple
sdk: gradio
sdk_version: 3.3.1
app_file: app.py
pinned: false
license: apache-2.0
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# Running Locally

To run this program locally, first install Python 3.9+ and Git. Then install Pytorch 10.1+ and all the other dependencies:
```
pip install -r requirements.txt
```

Finally, run the full version (no audio length restrictions) of the app:
```
python app-full.py
```

You can also run the CLI interface, which is similar to Whisper's own CLI but also supports the following additional arguments:
```
python cli.py \
[--vad {none,silero-vad,silero-vad-skip-gaps,silero-vad-expand-into-gaps,periodic-vad}] \
[--vad_merge_window VAD_MERGE_WINDOW] \
[--vad_max_merge_size VAD_MAX_MERGE_SIZE] \
[--vad_padding VAD_PADDING] \
[--vad_prompt_window VAD_PROMPT_WINDOW]
[--vad_parallel_devices COMMA_DELIMITED_DEVICES]
```
In addition, you may also use URL's in addition to file paths as input.
```
python cli.py --model large --vad silero-vad --language Japanese "https://www.youtube.com/watch?v=4cICErqqRSM"
```

## Parallel Execution

You can also run both the Web-UI or the CLI on multiple GPUs in parallel, using the `vad_parallel_devices` option. This takes a comma-delimited list of 
device IDs (0, 1, etc.) that Whisper should be distributed to and run on concurrently:
```
python cli.py --model large --vad silero-vad --language Japanese \
--vad_parallel_devices 0,1 "https://www.youtube.com/watch?v=4cICErqqRSM"
```

Note that this requires a VAD to function properly, otherwise only the first GPU will be used. Though you could use `period-vad` to avoid taking the hit
of running Silero-Vad, at a slight cost to accuracy.

This is achieved by creating N child processes (where N is the number of selected devices), where Whisper is run concurrently. In `app.py`, you can also 
set the `vad_process_timeout` option. This configures the number of seconds until a process is killed due to inactivity, freeing RAM and video memory. 
The default value is 30 minutes.

```
python app.py --input_audio_max_duration -1 --vad_parallel_devices 0,1 --vad_process_timeout 3600
```

You may also use `vad_process_timeout` with a single device (`--vad_parallel_devices 0`), if you prefer to always free video memory after a period of time.

# Docker

To run it in Docker, first install Docker and optionally the NVIDIA Container Toolkit in order to use the GPU. 
Then either use the GitLab hosted container below, or check out this repository and build an image:
```
sudo docker build -t whisper-webui:1 .
```

You can then start the WebUI with GPU support like so:
```
sudo docker run -d --gpus=all -p 7860:7860 whisper-webui:1
```

Leave out "--gpus=all" if you don't have access to a GPU with enough memory, and are fine with running it on the CPU only:
```
sudo docker run -d -p 7860:7860 whisper-webui:1
```

# GitLab Docker Registry

This Docker container is also hosted on GitLab:

```
sudo docker run -d --gpus=all -p 7860:7860 registry.gitlab.com/aadnk/whisper-webui:latest
```

## Custom Arguments

You can also pass custom arguments to `app.py` in the Docker container, for instance to be able to use all the GPUs in parallel:
```
sudo docker run -d --gpus all -p 7860:7860 \
--mount type=bind,source=/home/administrator/.cache/whisper,target=/root/.cache/whisper \
--restart=on-failure:15 registry.gitlab.com/aadnk/whisper-webui:latest \
app.py --input_audio_max_duration -1 --server_name 0.0.0.0 --vad_parallel_devices 0,1 \
--default_vad silero-vad --default_model_name large
```

You can also call `cli.py` the same way:
```
sudo docker run --gpus all \
--mount type=bind,source=/home/administrator/.cache/whisper,target=/root/.cache/whisper \
--mount type=bind,source=${PWD},target=/app/data \
registry.gitlab.com/aadnk/whisper-webui:latest \
cli.py --model large --vad_parallel_devices 0,1 --vad silero-vad \
--output_dir /app/data /app/data/YOUR-FILE-HERE.mp4
```

## Caching

Note that the models themselves are currently not included in the Docker images, and will be downloaded on the demand.
To avoid this, bind the directory /root/.cache/whisper to some directory on the host (for instance /home/administrator/.cache/whisper), where you can (optionally) 
prepopulate the directory with the different Whisper models. 
```
sudo docker run -d --gpus=all -p 7860:7860 \
--mount type=bind,source=/home/administrator/.cache/whisper,target=/root/.cache/whisper \
registry.gitlab.com/aadnk/whisper-webui:latest
```