File size: 20,857 Bytes
cb9ee50
31f7bdb
8d120bf
95261ed
8d120bf
05a2178
3fadc6e
8d120bf
3fadc6e
cb9ee50
20f75ae
 
c0e541b
cb9ee50
31f7bdb
95261ed
8d120bf
 
 
 
05a2178
 
883c794
c52f09b
95261ed
c0e541b
7ce6041
 
4514e2e
7ce6041
533d92e
 
 
6a308c6
 
 
20f75ae
 
 
93c4867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05a2178
 
de77829
 
883c794
22c7ed2
 
c0e541b
95261ed
c0e541b
 
31f7bdb
c0e541b
05a2178
f288ceb
31f7bdb
 
22c7ed2
05a2178
01fddc0
 
 
20f75ae
 
 
 
 
 
 
 
cb9ee50
533d92e
cb9ee50
fdd892b
 
 
 
 
31f7bdb
533d92e
cb9ee50
 
 
 
 
74b1efd
 
fdd892b
cb9ee50
 
22c7ed2
 
cb9ee50
 
 
 
 
 
 
 
 
 
 
 
 
 
22c7ed2
cb9ee50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71950a8
fdd892b
71950a8
fdd892b
 
883c794
cb9ee50
 
 
 
 
 
 
 
fdd892b
 
 
3fadc6e
95261ed
48d8572
84fa1f8
 
 
 
 
 
74b1efd
95261ed
74b1efd
 
 
d906b98
5bbbb16
95261ed
74b1efd
d906b98
5bbbb16
95261ed
d906b98
 
5bbbb16
95261ed
74b1efd
 
 
5bbbb16
95261ed
 
 
74b1efd
31f7bdb
 
 
 
 
 
 
 
35b79d6
74b1efd
 
 
95261ed
31f7bdb
95261ed
 
 
c0e541b
 
 
 
 
 
31f7bdb
c0e541b
31f7bdb
c0e541b
 
 
 
31f7bdb
 
 
c0e541b
 
31f7bdb
 
c0e541b
95261ed
84fa1f8
 
 
 
 
 
 
 
5bbbb16
d906b98
 
 
 
5bbbb16
d906b98
 
5bbbb16
d906b98
5bbbb16
d906b98
74b1efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883c794
31f7bdb
74b1efd
883c794
cb9ee50
 
8d120bf
883c794
 
 
 
 
 
 
 
 
 
 
6a308c6
883c794
 
 
 
 
 
3fadc6e
883c794
 
3fadc6e
883c794
 
 
 
7ce6041
883c794
05a2178
31f7bdb
cbc9717
31f7bdb
 
c0e541b
 
 
 
31f7bdb
05a2178
31f7bdb
22c7ed2
 
 
 
05a2178
95261ed
01fddc0
20f75ae
95261ed
71950a8
 
 
05a2178
f5884f3
38cc8a7
31f7bdb
 
93c4867
ed278a2
084aa80
74b1efd
de77829
71950a8
8d120bf
cb9ee50
71950a8
 
31f7bdb
d906b98
48d8572
 
d906b98
3fadc6e
8d120bf
3fadc6e
8d120bf
3fadc6e
7ce6041
31f7bdb
 
 
 
05a2178
71950a8
95261ed
724f5fc
95261ed
 
 
de77829
31f7bdb
 
c0e541b
31f7bdb
20f75ae
22c7ed2
95261ed
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from datetime import datetime
import math
from typing import Iterator
import argparse

from io import StringIO
import os
import pathlib
import tempfile
import zipfile

import torch
from src.modelCache import ModelCache
from src.source import get_audio_source_collection
from src.vadParallel import ParallelContext, ParallelTranscription

# External programs
import ffmpeg

# UI
import gradio as gr

from src.download import ExceededMaximumDuration, download_url
from src.utils import slugify, write_srt, write_vtt
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
from src.whisperContainer import WhisperContainer

# Limitations (set to -1 to disable)
DEFAULT_INPUT_AUDIO_MAX_DURATION = 600 # seconds

# Whether or not to automatically delete all uploaded files, to save disk space
DELETE_UPLOADED_FILES = True

# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself 
MAX_FILE_PREFIX_LENGTH = 17

# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number)
MAX_AUTO_CPU_CORES = 8

LANGUAGES = [ 
 "English", "Chinese", "German", "Spanish", "Russian", "Korean", 
 "French", "Japanese", "Portuguese", "Turkish", "Polish", "Catalan", 
 "Dutch", "Arabic", "Swedish", "Italian", "Indonesian", "Hindi", 
 "Finnish", "Vietnamese", "Hebrew", "Ukrainian", "Greek", "Malay", 
 "Czech", "Romanian", "Danish", "Hungarian", "Tamil", "Norwegian", 
 "Thai", "Urdu", "Croatian", "Bulgarian", "Lithuanian", "Latin", 
 "Maori", "Malayalam", "Welsh", "Slovak", "Telugu", "Persian", 
 "Latvian", "Bengali", "Serbian", "Azerbaijani", "Slovenian", 
 "Kannada", "Estonian", "Macedonian", "Breton", "Basque", "Icelandic", 
 "Armenian", "Nepali", "Mongolian", "Bosnian", "Kazakh", "Albanian",
 "Swahili", "Galician", "Marathi", "Punjabi", "Sinhala", "Khmer", 
 "Shona", "Yoruba", "Somali", "Afrikaans", "Occitan", "Georgian", 
 "Belarusian", "Tajik", "Sindhi", "Gujarati", "Amharic", "Yiddish", 
 "Lao", "Uzbek", "Faroese", "Haitian Creole", "Pashto", "Turkmen", 
 "Nynorsk", "Maltese", "Sanskrit", "Luxembourgish", "Myanmar", "Tibetan",
 "Tagalog", "Malagasy", "Assamese", "Tatar", "Hawaiian", "Lingala", 
 "Hausa", "Bashkir", "Javanese", "Sundanese"
]

WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2"]

class WhisperTranscriber:
    def __init__(self, input_audio_max_duration: float = DEFAULT_INPUT_AUDIO_MAX_DURATION, vad_process_timeout: float = None, 
                 vad_cpu_cores: int = 1, delete_uploaded_files: bool = DELETE_UPLOADED_FILES, output_dir: str = None):
        self.model_cache = ModelCache()
        self.parallel_device_list = None
        self.gpu_parallel_context = None
        self.cpu_parallel_context = None
        self.vad_process_timeout = vad_process_timeout
        self.vad_cpu_cores = vad_cpu_cores

        self.vad_model = None
        self.inputAudioMaxDuration = input_audio_max_duration
        self.deleteUploadedFiles = delete_uploaded_files
        self.output_dir = output_dir

    def set_parallel_devices(self, vad_parallel_devices: str):
        self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None

    def set_auto_parallel(self, auto_parallel: bool):
        if auto_parallel:
            if torch.cuda.is_available():
                self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())]

            self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES)
            print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.")

    def transcribe_webui(self, modelName, languageName, urlData, multipleFiles, microphoneData, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow):
        try:
            sources = self.__get_source(urlData, multipleFiles, microphoneData)
            
            try:
                selectedLanguage = languageName.lower() if len(languageName) > 0 else None
                selectedModel = modelName if modelName is not None else "base"

                model = WhisperContainer(model_name=selectedModel, cache=self.model_cache)

                # Result
                download = []
                zip_file_lookup = {}
                text = ""
                vtt = ""

                # Write result
                downloadDirectory = tempfile.mkdtemp()
                source_index = 0

                outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory

                # Execute whisper
                for source in sources:
                    source_prefix = ""

                    if (len(sources) > 1):
                        # Prefix (minimum 2 digits)
                        source_index += 1
                        source_prefix = str(source_index).zfill(2) + "_"
                        print("Transcribing ", source.source_path)

                    # Transcribe
                    result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
                    filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True)

                    source_download, source_text, source_vtt = self.write_result(result, filePrefix, outputDirectory)

                    if len(sources) > 1:
                        # Add new line separators
                        if (len(source_text) > 0):
                            source_text += os.linesep + os.linesep
                        if (len(source_vtt) > 0):
                            source_vtt += os.linesep + os.linesep

                        # Append file name to source text too
                        source_text = source.get_full_name() + ":" + os.linesep + source_text
                        source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt

                    # Add to result
                    download.extend(source_download)
                    text += source_text
                    vtt += source_vtt

                    if (len(sources) > 1):
                        # Zip files support at least 260 characters, but we'll play it safe and use 200
                        zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True)

                        # File names in ZIP file can be longer
                        for source_download_file in source_download:
                            # Get file postfix (after last -)
                            filePostfix = os.path.basename(source_download_file).split("-")[-1]
                            zip_file_name = zipFilePrefix + "-" + filePostfix
                            zip_file_lookup[source_download_file] = zip_file_name

                # Create zip file from all sources
                if len(sources) > 1:
                    downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")

                    with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip:
                        for download_file in download:
                            # Get file name from lookup
                            zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file))
                            zip.write(download_file, arcname=zip_file_name)

                    download.insert(0, downloadAllPath)

                return download, text, vtt

            finally:
                # Cleanup source
                if self.deleteUploadedFiles:
                    for source in sources:
                        print("Deleting source file " + source.source_path)

                        try:
                            os.remove(source.source_path)
                        except Exception as e:
                            # Ignore error - it's just a cleanup
                            print("Error deleting source file " + source.source_path + ": " + str(e))
        
        except ExceededMaximumDuration as e:
            return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"

    def transcribe_file(self, model: WhisperContainer, audio_path: str, language: str, task: str = None, vad: str = None, 
                        vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, **decodeOptions: dict):
        
        initial_prompt = decodeOptions.pop('initial_prompt', None)

        if ('task' in decodeOptions):
            task = decodeOptions.pop('task')

        # Callable for processing an audio file
        whisperCallable = model.create_callback(language, task, initial_prompt, **decodeOptions)

        # The results
        if (vad == 'silero-vad'):
            # Silero VAD where non-speech gaps are transcribed
            process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps)
        elif (vad == 'silero-vad-skip-gaps'):
            # Silero VAD where non-speech gaps are simply ignored
            skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps)
        elif (vad == 'silero-vad-expand-into-gaps'):
            # Use Silero VAD where speech-segments are expanded into non-speech gaps
            expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps)
        elif (vad == 'periodic-vad'):
            # Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
            # it may create a break in the middle of a sentence, causing some artifacts.
            periodic_vad = VadPeriodicTranscription()
            period_config = PeriodicTranscriptionConfig(periodic_duration=vadMaxMergeSize, max_prompt_window=vadPromptWindow)
            result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config)

        else:
            if (self._has_parallel_devices()):
                # Use a simple period transcription instead, as we need to use the parallel context
                periodic_vad = VadPeriodicTranscription()
                period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1)

                result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config)
            else:
                # Default VAD
                result = whisperCallable.invoke(audio_path, 0, None, None)

        return result

    def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig):
        if (not self._has_parallel_devices()):
            # No parallel devices, so just run the VAD and Whisper in sequence
            return vadModel.transcribe(audio_path, whisperCallable, vadConfig)

        gpu_devices = self.parallel_device_list

        if (gpu_devices is None or len(gpu_devices) == 0):
            # No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL.
            gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)]

        # Create parallel context if needed
        if (self.gpu_parallel_context is None):
            # Create a context wih processes and automatically clear the pool after 1 hour of inactivity
            self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout)
        # We also need a CPU context for the VAD
        if (self.cpu_parallel_context is None):
            self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout)

        parallel_vad = ParallelTranscription()
        return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable,  
                                                config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, 
                                                cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context) 

    def _has_parallel_devices(self):
        return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1

    def _concat_prompt(self, prompt1, prompt2):
        if (prompt1 is None):
            return prompt2
        elif (prompt2 is None):
            return prompt1
        else:
            return prompt1 + " " + prompt2

    def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1):
        # Use Silero VAD 
        if (self.vad_model is None):
            self.vad_model = VadSileroTranscription()

        config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, 
                max_silent_period=vadMergeWindow, max_merge_size=vadMaxMergeSize, 
                segment_padding_left=vadPadding, segment_padding_right=vadPadding, 
                max_prompt_window=vadPromptWindow)

        return config

    def write_result(self, result: dict, source_name: str, output_dir: str):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        text = result["text"]
        language = result["language"]
        languageMaxLineWidth = self.__get_max_line_width(language)

        print("Max line width " + str(languageMaxLineWidth))
        vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth)
        srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth)

        output_files = []
        output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
        output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
        output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));

        return output_files, text, vtt

    def clear_cache(self):
        self.model_cache.clear()
        self.vad_model = None

    def __get_source(self, urlData, multipleFiles, microphoneData):
        return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration)

    def __get_max_line_width(self, language: str) -> int:
        if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]):
            # Chinese characters and kana are wider, so limit line length to 40 characters
            return 40
        else:
            # TODO: Add more languages
            # 80 latin characters should fit on a 1080p/720p screen
            return 80

    def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int) -> str:
        segmentStream = StringIO()

        if format == 'vtt':
            write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
        elif format == 'srt':
            write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth)
        else:
            raise Exception("Unknown format " + format)

        segmentStream.seek(0)
        return segmentStream.read()

    def __create_file(self, text: str, directory: str, fileName: str) -> str:
        # Write the text to a file
        with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
            file.write(text)

        return file.name

    def close(self):
        print("Closing parallel contexts")
        self.clear_cache()

        if (self.gpu_parallel_context is not None):
            self.gpu_parallel_context.close()
        if (self.cpu_parallel_context is not None):
            self.cpu_parallel_context.close()


def create_ui(input_audio_max_duration, share=False, server_name: str = None, server_port: int = 7860, 
              default_model_name: str = "medium", default_vad: str = None, vad_parallel_devices: str = None, 
              vad_process_timeout: float = None, vad_cpu_cores: int = 1, auto_parallel: bool = False, 
              output_dir: str = None):
    ui = WhisperTranscriber(input_audio_max_duration, vad_process_timeout, vad_cpu_cores, DELETE_UPLOADED_FILES, output_dir)

    # Specify a list of devices to use for parallel processing
    ui.set_parallel_devices(vad_parallel_devices)
    ui.set_auto_parallel(auto_parallel)

    ui_description = "Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse " 
    ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
    ui_description += " as well as speech translation and language identification. "

    ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."

    if input_audio_max_duration > 0:
        ui_description += "\n\n" + "Max audio file length: " + str(input_audio_max_duration) + " s"

    ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)"

    demo = gr.Interface(fn=ui.transcribe_webui, description=ui_description, article=ui_article, inputs=[
        gr.Dropdown(choices=WHISPER_MODELS, value=default_model_name, label="Model"),
        gr.Dropdown(choices=sorted(LANGUAGES), label="Language"),
        gr.Text(label="URL (YouTube, etc.)"),
        gr.File(label="Upload Files", file_count="multiple"),
        gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
        gr.Dropdown(choices=["transcribe", "translate"], label="Task"),
        gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=default_vad, label="VAD"),
        gr.Number(label="VAD - Merge Window (s)", precision=0, value=5),
        gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=30),
        gr.Number(label="VAD - Padding (s)", precision=None, value=1),
        gr.Number(label="VAD - Prompt Window (s)", precision=None, value=3)
    ], outputs=[
        gr.File(label="Download"),
        gr.Text(label="Transcription"), 
        gr.Text(label="Segments")
    ])

    demo.launch(share=share, server_name=server_name, server_port=server_port)
    
    # Clean up
    ui.close()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--input_audio_max_duration", type=int, default=DEFAULT_INPUT_AUDIO_MAX_DURATION, help="Maximum audio file length in seconds, or -1 for no limit.")
    parser.add_argument("--share", type=bool, default=False, help="True to share the app on HuggingFace.")
    parser.add_argument("--server_name", type=str, default=None, help="The host or IP to bind to. If None, bind to localhost.")
    parser.add_argument("--server_port", type=int, default=7860, help="The port to bind to.")
    parser.add_argument("--default_model_name", type=str, choices=WHISPER_MODELS, default="medium", help="The default model name.")
    parser.add_argument("--default_vad", type=str, default="silero-vad", help="The default VAD.")
    parser.add_argument("--vad_parallel_devices", type=str, default="", help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.")
    parser.add_argument("--vad_cpu_cores", type=int, default=1, help="The number of CPU cores to use for VAD pre-processing.")
    parser.add_argument("--vad_process_timeout", type=float, default="1800", help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.")
    parser.add_argument("--auto_parallel", type=bool, default=False, help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.")
    parser.add_argument("--output_dir", "-o", type=str, default=None, help="directory to save the outputs")

    args = parser.parse_args().__dict__
    create_ui(**args)