File size: 4,059 Bytes
900a59b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import io
import os

os.system("wget -P hubert/ https://huggingface.co/spaces/MarcusSu1216/XingTong/blob/main/hubert/checkpoint_best_legacy_500.pt")
import gradio as gr
import librosa
import numpy as np
import soundfile
from inference.infer_tool import Svc
import logging

logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)

model = Svc("logs/44k/G_55000.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")

def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    # print(audio.shape,sampling_rate)
    duration = audio.shape[0] / sampling_rate
    if duration > 100:
        return "请上传小于100s的音频,需要转换长音频请本地进行转换", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    print(audio.shape)
    out_wav_path = "temp.wav"
    soundfile.write(out_wav_path, audio, 16000, format="wav")
    print( cluster_ratio, auto_f0, noise_scale)
    out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
                                   cluster_infer_ratio=cluster_ratio,
                                   auto_predict_f0=auto_f0,
                                   noice_scale=noise_scale
                                   )
    return "转换成功", (44100, out_audio.numpy())


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("介绍"):
            gr.Markdown(value="""
                星瞳_Official的语音在线合成,基于so-vits-svc-4.0生成。\n

                使用须知:\n
                 1、请使用伴奏和声去除干净的人声素材,时长小于100秒,格式为mp3或wav。\n
                 2、去除伴奏推荐使用UVR5软件,B站上有详细教程。\n
                 3、条件不支持推荐使用以下几个去伴奏的网站:\n
                 https://vocalremover.org/zh/\n
                 https://tuanziai.com/vocal-remover/upload\n
                 https://www.lalal.ai/zh-hans/\n
                 4、在线版服务器为2核16G免费版,转换效率较慢请耐心等待。\n
                 5、使用此模型请标注作者:一闪一闪小星瞳,以及该项目地址。\n
                 6、有问题可以在B站私聊我反馈:https://space.bilibili.com/38523418\n
                 7、语音模型转换出的音频请勿用于商业化。
                """)
            spks = list(model.spk2id.keys())
            sid = gr.Dropdown(label="音色", choices=["XT3.2"], value="XT3.2")
            vc_input3 = gr.Audio(label="上传音频(长度建议小于100秒)")
            vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
            cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
            auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
            noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
            vc_submit = gr.Button("转换", variant="primary")
            vc_output1 = gr.Textbox(label="Output Message")
            vc_output2 = gr.Audio(label="Output Audio")
        vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output1, vc_output2])

    app.launch()