File size: 10,156 Bytes
cc1bad4
 
3392a2f
cc1bad4
 
 
 
 
 
8deac30
56588b0
9e72422
b98996a
04dd2d0
cc1bad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597e146
 
 
92f70e9
597e146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768647a
 
597e146
 
 
 
 
768647a
597e146
768647a
cc1bad4
 
 
 
 
 
782ddf5
 
 
 
 
 
 
 
 
cc1bad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b3cbf2
 
 
 
 
 
782ddf5
 
7b3cbf2
cc1bad4
0bd8df8
1b40679
 
 
 
7b3cbf2
1b40679
 
 
 
 
 
3d5f799
61b12c9
782ddf5
 
 
 
7b3cbf2
 
e3b77c6
 
 
 
 
 
28d1bd2
e3b77c6
 
 
8be9cd4
 
7b3cbf2
7248e7e
 
 
 
 
 
 
 
 
41db4ae
f24fcd0
23b0da1
 
e3b77c6
c3cf49f
cc1bad4
 
 
 
 
0153e63
fb9840d
0153e63
04dd2d0
 
 
597e146
651d68e
 
d7fb4cd
 
dc23438
98a0325
a840685
98a0325
24747eb
4ceb548
0466670
a840685
933f493
a840685
d7fb4cd
6213c17
7217d9b
a840685
a61e3ce
 
 
 
 
 
d7fb4cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fe599
cc1bad4
 
a840685
 
 
 
cc1bad4
 
 
0b400c4
 
 
 
 
cc1bad4
2ac0b62
cc1bad4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io

# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# st.title("Hot Dog? Or Not?")

# file_name = st.file_uploader("Upload a hot dog candidate image")

# if file_name is not None:
#     col1, col2 = st.columns(2)

#     image = Image.open(file_name)
#     col1.image(image, use_column_width=True)
#     predictions = pipeline(image)

#     col2.header("Probabilities")
#     for p in predictions:
#         col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")

# def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
#     assert os.path.exists(audio_file)
#     st.markdown(os.path.exists(audio_file))
    
#     file_extension = os.path.splitext(audio_file)[1].lower()
#     st.markdown(file_extension)

#     if file_extension == ".mp3":
#         data, origin_sr = librosa.load(audio_file, sr=None)
#     elif file_extension in [".wav", ".flac"]:
#         data, origin_sr = soundfile.read(audio_file)
#     else:
#         raise Exception("unsupported file:" + file_extension)

#     # channel check
#     if len(data.shape) == 2:
#         left_channel = data[:, 0]
#         if verbose:
#             print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
#         data = left_channel

#     # sample rate check
#     if origin_sr != def_sr:
#         data = resampy.resample(data, origin_sr, def_sr)
#         if verbose:
#             print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")

#     sr = def_sr
#     audio_length_second = 1.0 * len(data) / sr
#     # if verbose:
#     #     print("input length :%d second" % audio_length_second)

#     if aim_second is not None:
#         signal = data
#         assert len(signal) > 0
#         current_second = len(signal) / sr
#         if current_second < aim_second:
#             repeat_count = int(aim_second / current_second) + 1
#             signal = np.repeat(signal, repeat_count)
#         data = signal[0:sr * aim_second]

#     return data, sr, audio_length_second

    
# def my_read_file(audio_path, max_second):
#     signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
#     if audio_length_second > max_second:
#         signal = signal[0:default_sr * max_second]
#         audio_length_second = max_second

#     return signal, sr, audio_length_second

def create_default_value():
    if "def_value" not in st.session_state:
        def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
        def_val_str = "".join([str(i) for i in def_val_npy])
        st.session_state.def_value = def_val_str

def download_sample_audio():
    url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
    with open("test.wav", "wb") as f:
        resp = urllib.request.urlopen(url)
        f.write(resp.read())
    
    wav, sample_rate = torchaudio.load("test.wav")
    return wav, sample_rate

# Main web app
def main():
    create_default_value()

    # st.title("MDS07")
    # st.write("https://github.com/wavmark/wavmark")
    markdown_text = """
    # MDS07
    [AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI. 
    You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
    
    This page is for demonstration usage and only process **the first minute** of the audio. 
    If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
    """

    # 使用st.markdown渲染Markdown文本
    st.markdown(markdown_text)

    audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)

    if audio_file:
        # 保存文件到本地:
        # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        # st.markdown(tmp_input_audio_file)
        # with open(tmp_input_audio_file, "wb") as f:
        #     f.write(audio_file.getbuffer())
        # st.audio(tmp_input_audio_file, format="mp3/wav")

        

        # Save file to local storage
        tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
        st.markdown(file_extension)
        if file_extension in [".wav", ".flac"]:
            with open("test.wav", "wb") as f:
                f.write(audio_file.getbuffer())

            st.audio("test.wav", format="audio/wav")

        elif file_extension == ".mp3":
            with open("test.mp3", "wb") as f:
                f.write(audio_file.getbuffer())

            st.audio("test.mp3", format="audio/mpeg")

        # # Convert MP3 to WAV using pydub
        # mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
        # wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
        # mp3_audio.export(wav_output_file, format="wav")

        # Load the WAV file using torchaudio
        if file_extension in [".wav", ".flac"]: 
            wav, sample_rate = torchaudio.load("test.wav")
            st.markdown("Before unsquueze wav")
            st.markdown(wav)
                
        elif file_extension == ".mp3":
            wav, sample_rate = torchaudio.load("test.mp3",format="mp3")
            st.markdown("Before unsqueeze mp3")
            st.markdown(wav)
        
        #Unsqueeze for line 176
        wav= wav.unsqueeze(0)

        # #2nd way
        # # Convert the tensor to a byte-like object in WAV format
        # with io.BytesIO() as buffer:
        # # Save the audio to the buffer using torchaudio
        #     torchaudio.save(buffer, wav, default_sr, format="wav")
        # # Get the byte data from the buffer
        #     wav = buffer.getvalue()
        # # Play the audio file (WAV format)
        # st.audio(wav, format="audio/wav")
        
        # wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
        st.markdown("SR")
        st.markdown(sample_rate)
        st.markdown("after unsqueeze wav or mp3")
        st.markdown(wav)
        # 展示文件到页面上
        # st.audio(tmp_input_audio_file, format="audio/wav")

        action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])

        if action == "Add Watermark":
            watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
            add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
            if add_watermark_button:  # 点击按钮后执行的
                if audio_file and watermark_text:
                    with st.spinner("Adding Watermark..."):
                        #wav = my_read_file(wav,max_second_encode)
                        
                        #1st attempt
                        watermark = model.get_watermark(wav, default_sr)
                        watermarked_audio = wav + watermark
                        print(watermarked_audio.size())
                        size = watermarked_audio.size()
                        #st.markdown(size)

                        print(watermarked_audio.squeeze())
                        squeeze = watermarked_audio.squeeze(1)
                        shape = squeeze.size()
                        #st.markdown(shape)

                        #st.markdown(squeeze)
                        
                        torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
                        st.audio("output.wav", format="audio/wav")

                        # st.download_button(
                        #     label="Download Watermarked audio",
                        #     data="output.wav",
                        #     file_name="output.wav",
                        #     mime="audio/wav",
                        # )
                        
                        #2nd Attempt
                        # watermarked_audio = model(wav, sample_rate=default_sr, alpha=1)
                        # print(watermarked_audio.size())
                        # size = watermarked_audio.size()
                        # st.markdown(size)

                        # print(watermarked_audio.squeeze())
                        # squeeze = watermarked_audio.squeeze(1)
                        # shape = squeeze.size()
                        # st.markdown(shape)

                        # st.markdown(squeeze)
                        # # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
                        # st.write("Watermarked Audio:")
                        # st.markdown(watermarked_audio)
                        # print("watermarked_audio:", watermarked_audio)

                        # watermarked_audio = torchaudio.save("output.wav", squeeze, default_sr)
                        # st.audio(watermarked_audio, format="audio/wav")
                        #st.write("Time Cost: %d seconds" % encode_time_cost)

#                         # st.button("Add Watermark", disabled=False)
        # elif action == "Decode Watermark":
        #     if st.button("Decode"):
        #         with st.spinner("Decoding..."):
        #             decode_watermark(tmp_input_audio_file)


if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # model = wavmark.load_model().to(device)
    model = AudioSeal.load_generator("audioseal_wm_16bits")
    main()

    # audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"

    # decoded_watermark, decode_cost = decode_watermark(audio_path)
    # print(decoded_watermark)