Spaces:
Running
Running
File size: 16,931 Bytes
7eda955 30fabb4 78ca0bd 7eda955 78ca0bd 7eda955 78ca0bd 30fabb4 78ca0bd 30fabb4 78ca0bd 30fabb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
"""
Base API module for handling different API providers.
This module provides a unified interface for interacting with various API providers
like Anthropic, OpenAI, Google Gemini and Together AI.
"""
from abc import ABC, abstractmethod
import logging
import requests
from openai import OpenAI
from typing import Optional, Dict, Any, List
from dataclasses import dataclass
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class APIResponse:
"""Standardized API response structure"""
text: str
raw_response: Any
usage: Dict[str, int]
model: str
class APIError(Exception):
"""Custom exception for API-related errors"""
def __init__(self, message: str, provider: str, status_code: Optional[int] = None):
self.message = message
self.provider = provider
self.status_code = status_code
super().__init__(f"{provider} API Error: {message} (Status: {status_code})")
class BaseAPI(ABC):
"""Abstract base class for API interactions"""
def __init__(self, api_key: str, model: str):
self.api_key = api_key
self.model = model
self.provider_name = "base" # Override in subclasses
@abstractmethod
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the API"""
pass
def _format_prompt(self, question: str, prompt_format: Optional[str] = None) -> str:
"""Format the prompt using custom format if provided"""
if prompt_format:
return prompt_format.format(question=question)
# Default format if none provided
return f"""Please answer the question using the following format, with each step clearly marked:
Question: {question}
Let's solve this step by step:
<step number="1">
[First step of reasoning]
</step>
<step number="2">
[Second step of reasoning]
</step>
<step number="3">
[Third step of reasoning]
</step>
... (add more steps as needed)
<answer>
[Final answer]
</answer>
Note:
1. Each step must be wrapped in XML tags <step>
2. Each step must have a number attribute
3. The final answer must be wrapped in <answer> tags
"""
def _handle_error(self, error: Exception, context: str = "") -> None:
"""Standardized error handling"""
error_msg = f"{self.provider_name} API error in {context}: {str(error)}"
logger.error(error_msg)
raise APIError(str(error), self.provider_name)
class AnthropicAPI(BaseAPI):
"""Class to handle interactions with the Anthropic API"""
def __init__(self, api_key: str, model: str = "claude-3-opus-20240229"):
super().__init__(api_key, model)
self.provider_name = "Anthropic"
self.base_url = "https://api.anthropic.com/v1/messages"
self.headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"content-type": "application/json"
}
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the Anthropic API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
data = {
"model": self.model,
"messages": [{"role": "user", "content": formatted_prompt}],
"max_tokens": max_tokens
}
logger.info(f"Sending request to Anthropic API with model {self.model}")
response = requests.post(self.base_url, headers=self.headers, json=data)
response.raise_for_status()
response_data = response.json()
return response_data["content"][0]["text"]
except requests.exceptions.RequestException as e:
self._handle_error(e, "request")
except (KeyError, IndexError) as e:
self._handle_error(e, "response parsing")
except Exception as e:
self._handle_error(e, "unexpected")
class OpenAIAPI(BaseAPI):
"""Class to handle interactions with the OpenAI API"""
def __init__(self, api_key: str, model: str = "gpt-4-turbo-preview"):
super().__init__(api_key, model)
self.provider_name = "OpenAI"
try:
self.client = OpenAI(api_key=api_key)
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the OpenAI API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to OpenAI API with model {self.model}")
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": formatted_prompt}],
max_tokens=max_tokens
)
return response.choices[0].message.content
except Exception as e:
self._handle_error(e, "request or response processing")
class GeminiAPI(BaseAPI):
"""Class to handle interactions with the Google Gemini API"""
def __init__(self, api_key: str, model: str = "gemini-2.0-flash"):
super().__init__(api_key, model)
self.provider_name = "Gemini"
try:
from google import genai
self.client = genai.Client(api_key=api_key)
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the Gemini API"""
try:
from google.genai import types
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to Gemini API with model {self.model}")
response = self.client.models.generate_content(
model=self.model,
contents=[formatted_prompt],
config=types.GenerateContentConfig(
max_output_tokens=max_tokens,
temperature=0.7
)
)
if not response.text:
raise APIError("Empty response from Gemini API", self.provider_name)
return response.text
except Exception as e:
self._handle_error(e, "request or response processing")
class TogetherAPI(BaseAPI):
"""Class to handle interactions with the Together AI API"""
def __init__(self, api_key: str, model: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"):
super().__init__(api_key, model)
self.provider_name = "Together"
try:
from together import Together
self.client = Together(api_key=api_key)
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the Together AI API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to Together AI API with model {self.model}")
response = self.client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": formatted_prompt}],
max_tokens=max_tokens
)
# Robust response extraction
if hasattr(response, 'choices') and response.choices:
return response.choices[0].message.content
elif hasattr(response, 'text'):
return response.text
else:
# If response doesn't match expected structures
raise APIError("Unexpected response format from Together AI", self.provider_name)
except Exception as e:
self._handle_error(e, "request or response processing")
class DeepSeekAPI(BaseAPI):
"""Class to handle interactions with the DeepSeek API"""
def __init__(self, api_key: str, model: str = "deepseek-chat"):
super().__init__(api_key, model)
self.provider_name = "DeepSeek"
try:
self.client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the DeepSeek API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to DeepSeek API with model {self.model}")
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "user", "content": formatted_prompt}
],
max_tokens=max_tokens
)
# Check if this is the reasoning model response
if self.model == "deepseek-reasoner" and hasattr(response.choices[0].message, "reasoning_content"):
# Include both reasoning and answer
reasoning = response.choices[0].message.reasoning_content
answer = response.choices[0].message.content
return f"Reasoning:\n{reasoning}\n\nAnswer:\n{answer}"
else:
# Regular model response
return response.choices[0].message.content
except Exception as e:
self._handle_error(e, "request or response processing")
class QwenAPI(BaseAPI):
"""Class to handle interactions with the Qwen API"""
def __init__(self, api_key: str, model: str = "qwen-plus"):
super().__init__(api_key, model)
self.provider_name = "Qwen"
try:
self.client = OpenAI(
api_key=api_key,
base_url="https://dashscope-intl.aliyuncs.com/compatible-mode/v1"
)
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the Qwen API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to Qwen API with model {self.model}")
# Check if this is the reasoning model (qwq-plus)
if self.model == "qwq-plus":
# For qwq-plus model, we need to use streaming
reasoning_content = ""
answer_content = ""
is_answering = False
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "user", "content": formatted_prompt}
],
max_tokens=max_tokens,
stream=True # qwq-plus only supports streaming output
)
for chunk in response:
if not chunk.choices:
continue
delta = chunk.choices[0].delta
# Collect reasoning process
if hasattr(delta, 'reasoning_content') and delta.reasoning_content is not None:
reasoning_content += delta.reasoning_content
# Collect answer content
elif hasattr(delta, 'content') and delta.content is not None:
answer_content += delta.content
is_answering = True
# Return combined reasoning and answer
return f"Reasoning:\n{reasoning_content}\n\nAnswer:\n{answer_content}"
else:
# Regular model response (non-streaming)
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "user", "content": formatted_prompt}
],
max_tokens=max_tokens
)
return response.choices[0].message.content
except Exception as e:
self._handle_error(e, "request or response processing")
class GrokAPI(BaseAPI):
"""Class to handle interactions with the Grok API"""
def __init__(self, api_key: str, model: str = "grok-2-latest"):
super().__init__(api_key, model)
self.provider_name = "Grok"
try:
self.client = OpenAI(
api_key=api_key,
base_url="https://api.x.ai/v1"
)
except Exception as e:
self._handle_error(e, "initialization")
def generate_response(self, prompt: str, max_tokens: int = 1024,
prompt_format: Optional[str] = None) -> str:
"""Generate a response using the Grok API"""
try:
formatted_prompt = self._format_prompt(prompt, prompt_format)
logger.info(f"Sending request to Grok API with model {self.model}")
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "user", "content": formatted_prompt}
],
max_tokens=max_tokens
)
return response.choices[0].message.content
except Exception as e:
self._handle_error(e, "request or response processing")
class APIFactory:
"""Factory class for creating API instances"""
_providers = {
"anthropic": {
"class": AnthropicAPI,
"default_model": "claude-3-7-sonnet-20250219"
},
"openai": {
"class": OpenAIAPI,
"default_model": "gpt-4-turbo-preview"
},
"google": {
"class": GeminiAPI,
"default_model": "gemini-2.0-flash"
},
"together": {
"class": TogetherAPI,
"default_model": "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo"
},
"deepseek": {
"class": DeepSeekAPI,
"default_model": "deepseek-chat"
},
"qwen": {
"class": QwenAPI,
"default_model": "qwen-plus"
},
"grok": {
"class": GrokAPI,
"default_model": "grok-2-latest"
}
}
@classmethod
def supported_providers(cls) -> List[str]:
"""Get list of supported providers"""
return list(cls._providers.keys())
@classmethod
def create_api(cls, provider: str, api_key: str, model: Optional[str] = None) -> BaseAPI:
"""Factory method to create appropriate API instance"""
provider = provider.lower()
if provider not in cls._providers:
raise ValueError(f"Unsupported provider: {provider}. "
f"Supported providers are: {', '.join(cls.supported_providers())}")
provider_info = cls._providers[provider]
api_class = provider_info["class"]
model = model or provider_info["default_model"]
logger.info(f"Creating API instance for provider: {provider}, model: {model}")
return api_class(api_key=api_key, model=model)
def create_api(provider: str, api_key: str, model: Optional[str] = None) -> BaseAPI:
"""Convenience function to create API instance"""
return APIFactory.create_api(provider, api_key, model)
# Example usage:
if __name__ == "__main__":
# Example with Anthropic
anthropic_api = create_api("anthropic", "your-api-key")
# Example with OpenAI
openai_api = create_api("openai", "your-api-key", "gpt-4")
# Example with Gemini
gemini_api = create_api("gemini", "your-api-key", "gemini-2.0-flash")
# Example with Together AI
together_api = create_api("together", "your-api-key")
# Get supported providers
providers = APIFactory.supported_providers()
print(f"Supported providers: {providers}") |