File size: 17,384 Bytes
d2410ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from PIL import Image
import numpy as np
import torch, os
import sam2point.utils as utils
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
MODELCFG = "sam2_hiera_l.yaml"
RESOLUTION = 256
def grid_to_frames(grid, foldpath, args):
if not utils.build_fold(foldpath):
utils.visualize_per_frame(grid, foldpath=foldpath, resolution=RESOLUTION, args=args)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(foldpath)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
for i in range(len(frame_names)):
frame_names[i] = os.path.join(foldpath, frame_names[i])
return frame_names
def segment_point(frame_paths, point):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = predictor.init_state(frame_paths=frame_paths)
predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array([point], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array([1], np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
return masks
def segment_box(frame_paths, box, n_frame):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = predictor.init_state(frame_paths=frame_paths)
predictor.reset_state(inference_state)
for i in range(n_frame):
ann_frame_idx = i # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
box = np.array(box, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
box=box,
)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
# print(masks.shape)
return masks
def segment_mask(frame_paths, point):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
# generate a mask for one frame, where we use the image predictor
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint)
image_predictor = SAM2ImagePredictor(sam2_image_model)
image = Image.open(frame_paths[0])
image_predictor.set_image(np.array(image.convert("RGB")))
point = np.array([point], dtype=np.float32)
label = np.array([1], np.int32)
masks, scores, logits = image_predictor.predict(point_coords=point, point_labels=label, multimask_output=True)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
# predict the mask for other frames
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = video_predictor.init_state(frame_paths=frame_paths)
video_predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
mask_prompt = masks[0]
video_predictor.add_new_mask(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, mask=mask_prompt)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
return masks, mask_prompt
def seg_point(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
voxel_coords = np.array(prompt) / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
a0_mask_0 = torch.flip(segment_point(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]]), dims=[0])
a0_mask_1 = segment_point(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]])[1:, :, :]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_mask_0 = torch.flip(segment_point(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]]), dims=[0])
a1_mask_1 = segment_point(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]])[1:, :, :]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_mask_0 = torch.flip(segment_point(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]]), dims=[0])
a2_mask_1 = segment_point(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]])[1:, :, :]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
# utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
return mask
def seg_box(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
point_prompts = np.array(prompt)
voxel_coords = point_prompts / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 3]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 4]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 5]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
frame_num0 = voxel_coords[idx, 3] - voxel_coords[idx, 0]
end0, start0 = len(a0_paths_0) - int(frame_num0 / 2), int(frame_num0 / 2)
a0_mask_0 = torch.flip(segment_box(a0_paths_0, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0), dims=[0])[:end0]
a0_mask_1 = segment_box(a0_paths_1, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0)[start0:]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
frame_num1 = voxel_coords[idx, 4] - voxel_coords[idx, 1]
end1, start1 = len(a1_paths_0) - int(frame_num1 / 2), int(frame_num1 / 2)
a1_mask_0 = torch.flip(segment_box(a1_paths_0, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1), dims=[0])[:end1]
a1_mask_1 = segment_box(a1_paths_1, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1)[start1:]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
frame_num2 = voxel_coords[idx, 5] - voxel_coords[idx, 2]
end2, start2 = len(a2_paths_0) - int(frame_num2 / 2), int(frame_num2 / 2)
a2_mask_0 = torch.flip(segment_box(a2_paths_0, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2), dims=[0])[:end2]
a2_mask_1 = segment_box(a2_paths_1, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2)[start2:]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
# utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
return mask
def seg_mask(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
point_prompts = np.array(prompt)
voxel_coords = point_prompts / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
a0_mask_0, a0_prompt = segment_mask(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]])
a0_mask_0 = torch.flip(a0_mask_0, dims=[0])
a0_mask_1, _ = segment_mask(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]])
a0_mask_1 = a0_mask_1[1:, :, :]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_prompt_mask = a0_mask * 0
a0_prompt_mask[voxel_coords[idx, 0]] = torch.from_numpy(a0_prompt)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_prompt_mask = torch.nn.functional.interpolate(a0_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_mask_0, a1_prompt = segment_mask(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]])
a1_mask_0 = torch.flip(a1_mask_0, dims=[0])
a1_mask_1, _ = segment_mask(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]])
a1_mask_1 = a1_mask_1[1:, :, :]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_prompt_mask = a1_mask * 0
a1_prompt_mask[voxel_coords[idx, 1]] = torch.from_numpy(a1_prompt)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_prompt_mask = torch.nn.functional.interpolate(a1_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_mask_0, a2_prompt = segment_mask(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]])
a2_mask_0 = torch.flip(a2_mask_0, dims=[0])
a2_mask_1, _ = segment_mask(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]])
a2_mask_1 = a2_mask_1[1:, :, :]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_prompt_mask = a2_mask * 0
a2_prompt_mask[voxel_coords[idx, 2]] = torch.from_numpy(a2_prompt)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_prompt_mask = torch.nn.functional.interpolate(a2_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION, name=name, args=args)
a0_prompt_mask, a1_prompt_mask, a2_prompt_mask = a0_prompt_mask.transpose(0, 1), a1_prompt_mask.transpose(0, 1), a2_prompt_mask.transpose(0, 1)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
prompt_mask = a0_prompt_mask.permute(0, 2, 3, 1) + a1_prompt_mask.permute(2, 0, 3, 1) + a2_prompt_mask.permute(2, 3, 0, 1)
prompt_mask = (prompt_mask > 0.5).squeeze()[2:, 2:, 2:]
return mask, prompt_mask |