File size: 14,047 Bytes
f97813d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np


class ConvGRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=192 + 128):
        super(ConvGRU, self).__init__()
        self.convz = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)
        self.convr = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)
        self.convq = nn.Conv2d(hidden_dim + input_dim, hidden_dim, 3, padding=1)

    def forward(self, h, x):
        hx = torch.cat([h, x], dim=1)

        z = torch.sigmoid(self.convz(hx))
        r = torch.sigmoid(self.convr(hx))
        q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1)))

        h = (1 - z) * h + z * q
        return h


class SepConvGRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=192 + 128):
        super(SepConvGRU, self).__init__()
        self.convz1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
        self.convr1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
        self.convq1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))

        self.convz2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
        self.convr2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
        self.convq2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))

    def forward(self, h, x):
        # horizontal
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz1(hx))
        r = torch.sigmoid(self.convr1(hx))
        q = torch.tanh(self.convq1(torch.cat([r * h, x], dim=1)))
        h = (1 - z) * h + z * q

        # vertical
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz2(hx))
        r = torch.sigmoid(self.convr2(hx))
        q = torch.tanh(self.convq2(torch.cat([r * h, x], dim=1)))
        h = (1 - z) * h + z * q

        return h


class GRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=192 + 128):
        super(GRU, self).__init__()
        self.convz1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
        self.convr1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))
        self.convq1 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))

        self.convz2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
        self.convr2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))
        self.convq2 = nn.Conv2d(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))

    def forward(self, hidden, x, shape):
        # horizontal
        b, l, c = hidden.shape
        h, w = shape
        hidden = hidden.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
        x = x.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()

        hx = torch.cat([hidden, x], dim=1)
        z = torch.sigmoid(self.convz1(hx))
        r = torch.sigmoid(self.convr1(hx))
        q = torch.tanh(self.convq1(torch.cat([r * hidden, x], dim=1)))
        hidden = (1 - z) * hidden + z * q

        # vertical
        hx = torch.cat([hidden, x], dim=1)
        z = torch.sigmoid(self.convz2(hx))
        r = torch.sigmoid(self.convr2(hx))
        q = torch.tanh(self.convq2(torch.cat([r * hidden, x], dim=1)))
        hidden = (1 - z) * hidden + z * q

        return hidden.flatten(-2).permute(0, 2, 1)


class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """

    def __init__(self, num_pos_feats=64, temperature=10000, normalize=True, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, x):
        # x = tensor_list.tensors  # [B, C, H, W]
        # mask = tensor_list.mask  # [B, H, W], input with padding, valid as 0
        b, c, h, w = x.size()
        mask = torch.ones((b, h, w), device=x.device)  # [B, H, W]
        y_embed = mask.cumsum(1, dtype=torch.float32)
        x_embed = mask.cumsum(2, dtype=torch.float32)
        #
        # y_embed = (y_embed / 2) ** 2
        # x_embed = (x_embed / 2) ** 2

        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

            # using an exponential
        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        return pos


def feature_add_position(feature0, feature_channels, scale=1.0):
    temp = torch.mean(abs(feature0))
    pos_enc = PositionEmbeddingSine(num_pos_feats=feature_channels // 2)
    # position = PositionalEncodingPermute2D(feature_channels)(feature0)
    position = pos_enc(feature0)
    feature0 = feature0 + (temp * position / position.mean()) * scale * torch.pi
    feature0 = feature0 * temp / torch.mean(abs(feature0), dim=(1, 2, 3), keepdim=True)
    return feature0


def feature_add_image_content(feature0, add_fea, scale=0.4):
    temp = torch.mean(abs(feature0))
    position = add_fea
    feature0 = feature0 + (temp * position / position.mean()) * scale * torch.pi
    feature0 = feature0 * temp / torch.mean(abs(feature0), dim=(1, 2, 3), keepdim=True)
    return feature0


class AttUp(nn.Module):
    def __init__(self,
                 c=512
                 ):
        super(AttUp, self).__init__()
        self.proj = nn.Linear(c, c, bias=False)
        self.norm = nn.LayerNorm(c)
        self.conv = nn.Sequential(nn.Conv2d(2 * c, c, kernel_size=1, stride=1, padding=0),
                                  nn.GELU(),
                                  nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1),
                                  nn.GELU(),
                                  nn.Conv2d(c, c, kernel_size=3, stride=1, padding=1),
                                  nn.GELU()
                                  )
        self.gru = SepConvGRU(c, c)

    def forward(self, att, message, shape):
        # q, k, v: [B, L, C]
        b, l, c = att.shape
        h, w = shape
        message = self.norm(self.proj(message)).view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
        att = att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous()
        message = self.conv(torch.cat([att, message], dim=1))
        att = self.gru(att, message).flatten(-2).permute(0, 2, 1)
        # [B, H*W, C]
        return att


class TransformerLayer(nn.Module):
    def __init__(self,
                 d_model=256,
                 nhead=1,
                 no_ffn=False,
                 ffn_dim_expansion=4
                 ):
        super(TransformerLayer, self).__init__()

        self.dim = d_model
        self.nhead = nhead
        self.no_ffn = no_ffn
        # multi-head attention
        self.att_proj = nn.Sequential(nn.Linear(d_model, d_model, bias=False), nn.ReLU(inplace=True),
                                      nn.Linear(d_model, d_model, bias=False))
        self.v_proj = nn.Linear(d_model, d_model, bias=False)
        self.merge = nn.Linear(d_model, d_model, bias=False)
        self.gru = GRU(d_model, d_model)
        self.attn_updater = AttUp(d_model)
        self.drop = nn.Dropout(p=0.8)

        self.norm1 = nn.LayerNorm(d_model)

        # no ffn after self-attn, with ffn after cross-attn
        if not self.no_ffn:
            in_channels = d_model * 2
            self.mlp = nn.Sequential(
                nn.Linear(in_channels, in_channels * ffn_dim_expansion, bias=False),
                nn.GELU(),
                nn.Linear(in_channels * ffn_dim_expansion, in_channels * ffn_dim_expansion, bias=False),
                nn.GELU(),
                nn.Linear(in_channels * ffn_dim_expansion, d_model, bias=False),
            )

            self.norm2 = nn.LayerNorm(d_model)

    def forward(self, att, value,
                shape, iteration=0):
        # source, target: [B, L, C]
        max_exp_scale = 3 * torch.pi
        # single-head attention
        B, L, C = value.shape
        if iteration == 0:
            att = feature_add_position(att.transpose(-1, -2).view(
                B, C, shape[0], shape[1]), C).reshape(B, C, -1).transpose(-1, -2)

            # att = feature_add_position(att.transpose(-1, -2).view(
            #     B, C, shape[0], shape[1]), C).reshape(B, C, -1).transpose(-1, -2)
        val_proj = self.v_proj(value)
        att_proj = self.att_proj(att)  # [B, L, C]
        norm_fac = torch.sum(att_proj ** 2, dim=-1, keepdim=True) ** 0.5
        scale = max_exp_scale * torch.sigmoid(torch.mean(att_proj, dim=[-1, -2], keepdim=True)) + 1
        A = torch.exp(scale * torch.matmul(att_proj / norm_fac, att_proj.permute(0, 2, 1) / norm_fac.permute(0, 2, 1)))
        A = A / A.max()
        # I = torch.eye(A.shape[-1], device=A.device).unsqueeze(0)
        # # A[I.repeat(B, 1, 1) == 1] = 1e-6  # remove self-prop
        D = torch.sum(A, dim=-1, keepdim=True)
        D = 1 / (torch.sqrt(D) + 1e-6)  # normalized node degrees
        A = D * A * D.transpose(-1, -2)

        # A = torch.softmax(A , dim=2)  # [B, L, L]
        message = torch.matmul(A, val_proj)  # [B, L, C]

        message = self.merge(message)  # [B, L, C]
        message = self.norm1(message)
        if not self.no_ffn:
            message = self.mlp(torch.cat([value, message], dim=-1))
            message = self.norm2(message)

        # if iteration > 2:
        #     message = self.drop(message)

        att = self.attn_updater(att, message, shape)
        value = self.gru(value, message, shape)
        return value, att, A


class FeatureTransformer(nn.Module):
    def __init__(self,
                 num_layers=6,
                 d_model=128
                 ):
        super(FeatureTransformer, self).__init__()
        self.d_model = d_model
        # self.layers = nn.ModuleList([TransformerLayer(self.d_model, no_ffn=False, ffn_dim_expansion=2)
        #                              for i in range(num_layers)])
        self.layers = TransformerLayer(self.d_model, no_ffn=False, ffn_dim_expansion=2)
        self.re_proj = nn.Sequential(nn.Linear(d_model, d_model), nn.GELU(), nn.Linear(d_model, d_model))
        self.num_layers = num_layers
        self.norm_sigma = nn.Parameter(torch.tensor(1.0, requires_grad=True), requires_grad=True)
        self.norm_k = nn.Parameter(torch.tensor(1.8, requires_grad=True), requires_grad=True)

        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def normalize(self, x):  # TODO
        sum_activation = torch.mean(x, dim=[1, 2], keepdim=True) + torch.square(self.norm_sigma)
        x = self.norm_k.abs() * x / sum_activation
        return x

    def forward(self, feature0):

        feature_list = []
        attn_list = []
        attn_viz_list = []
        b, c, h, w = feature0.shape
        assert self.d_model == c
        value = feature0.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
        att = feature0
        att = att.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
        for i in range(self.num_layers):
            value, att, attn_viz = self.layers(att=att, value=value, shape=[h, w], iteration=i)
            attn_viz = attn_viz.reshape(b, h, w, h, w)
            attn_viz_list.append(attn_viz)
            value_decode = self.normalize(
                torch.square(self.re_proj(value)))  # map to motion energy, Do use normalization here
            # print("value_decode",value_decode.abs().mean())
            attn_list.append(att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
            feature_list.append(value_decode.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
        # reshape back
        return feature_list, attn_list, attn_viz_list

    def forward_save_mem(self, feature0, add_position_embedding=True):
        feature_list = []
        attn_list = []
        attn_viz_list = []
        b, c, h, w = feature0.shape
        assert self.d_model == c
        value = feature0.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
        att = feature0
        att = att.flatten(-2).permute(0, 2, 1)  # [B, H*W, C]
        for i in range(self.num_layers):
            value, att, _ = self.layers(att=att, value=value, shape=[h, w], iteration=i)
            value_decode = self.normalize(
                torch.square(self.re_proj(value)))  # map to motion energy, Do use normalization here
            # print("value_decode",value_decode.abs().mean())
            attn_list.append(att.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
            feature_list.append(value_decode.view(b, h, w, c).permute(0, 3, 1, 2).contiguous())
        # reshape back
        return feature_list, attn_list

    @staticmethod
    def demo():
        import time
        frame_list = torch.randn([4, 256, 64, 64], device="cuda")
        model = FeatureTransformer(6, 256).cuda()
        for i in range(100):
            start = time.time()
            output = model(frame_list)

            torch.mean(output[-1][-1]).backward()
            end = time.time()
            print(end - start)
            print("#================================++#")


if __name__ == '__main__':
    FeatureTransformer.demo()