Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,452 Bytes
f97813d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import numpy as np
import math
import torch
from io import BytesIO
import numpy
from torch import nn
from torch.nn import functional as F
import matplotlib.pyplot as plt
import os
import imageio
from torch.cuda.amp import autocast as autocast
def cart2pol(x, y):
rho = np.sqrt(x ** 2 + y ** 2)
phi = np.arctan2(y, x)
return (rho, phi)
def pol2cart(rho, phi):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return (x, y)
def inverse_sigmoid(p):
return np.log(p / (1 - p))
def artanh(y):
return 0.5 * np.log((1 + y) / (1 - y))
class V1(nn.Module):
"""each input includes 10 frame with 25 frame/sec sampling rate
temporal window size = 5 frame(200ms)
spatial window size = 5*2 + 1 = 11
spatial filter is
lambda is frequency of cos wave
"""
def __init__(self, spatial_num=32, scale_num=8, scale_factor=16, kernel_radius=7, num_ft=32,
kernel_size=6, average_time=True):
super(V1, self).__init__()
def make_param(in_channels, values, requires_grad=True, dtype=None):
if dtype is None:
dtype = 'float32'
values = numpy.require(values, dtype=dtype)
n = in_channels * len(values)
data = torch.from_numpy(values).view(1, -1)
data = data.repeat(in_channels, 1)
return torch.nn.Parameter(data=data, requires_grad=requires_grad)
assert spatial_num == num_ft
scale_each_level = np.exp(1 / (scale_num - 1) * np.log(1 / scale_factor))
self.scale_each_level = scale_each_level
self.scale_num = scale_num
self.cell_index = 0
self.spatial_filter = nn.ModuleList([GaborFilters(kernel_radius=kernel_radius, num_units=spatial_num,random=False)
for i in range(scale_num)])
self.temporal_decay = 0.2
self.spatial_decay = 0.2
self.spatial_radius = kernel_radius
self.spatial_kernel_size = kernel_radius * 2 + 1
self.spatial_num = spatial_num
self.temporal_filter = nn.ModuleList([TemporalFilter(num_ft=num_ft, kernel_size=kernel_size, random=False)
for i in range(scale_num)]) # 16 filter
self.n_frames = 11
self._num_after_st = spatial_num * scale_num
if not average_time:
self._num_after_st = self._num_after_st * (self.n_frames - kernel_size + 1)
if average_time:
self.temporal_pooling = make_param(self._num_after_st, np.ones((self.n_frames - kernel_size + 1)),
requires_grad=True)
# TODO: concentrate on middle frame
self.temporal_pooling = make_param(self._num_after_st, [0.05, 0.1, 0.4, 0.4, 0.1, 0.05],
requires_grad=True)
self.norm_sigma = make_param(1, np.array([0.2]), requires_grad=True)
self.spontaneous_firing = make_param(1, np.array([0.3]), requires_grad=True)
self.norm_k = make_param(1, np.array([4.0]), requires_grad=True)
self._average_time = average_time
self.t_sin = None
self.t_cos = None
self.s_sin = None
self.s_cos = None
def infer_scale(self, x, scale): # x should be list of B,1,H,W
energy_list = []
n = len(x)
B, C, H, W = x[0].shape
x = [img.unsqueeze(0) for img in x]
x = torch.cat(x, dim=0).reshape(n * B, C, H, W)
sy = x.size(2)
sx = x.size(3)
s_sin = self.s_sin
s_cos = self.s_cos
gb_sin = s_sin.view(self.spatial_num, 1, self.spatial_kernel_size, self.spatial_kernel_size)
gb_cos = s_cos.view(self.spatial_num, 1, self.spatial_kernel_size, self.spatial_kernel_size)
# flip kernel
gb_sin = torch.flip(gb_sin, dims=[-1, -2])
gb_cos = torch.flip(gb_cos, dims=[-1, -2])
res_sin = F.conv2d(input=x, weight=gb_sin,
padding=self.spatial_radius, groups=1)
res_cos = F.conv2d(input=x, weight=gb_cos,
padding=self.spatial_radius, groups=1)
res_sin = res_sin.view(B, -1, sy, sx)
res_cos = res_cos.view(B, -1, sy, sx)
g_asin_list = res_sin.reshape(n, B, -1, H, W)
g_acos_list = res_cos.reshape(n, B, -1, H, W)
for channel in range(self.spatial_filter[0].n_channels_post_conv):
k_sin = self.t_sin[channel, ...][None]
k_cos = self.t_cos[channel, ...][None]
# spatial filter
g_asin, g_acos = g_asin_list[:, :, channel, :, :], g_acos_list[:, :, channel, :, :] # n,b,h,w
g_asin = g_asin.reshape(n, B * H * W, 1).permute(1, 2, 0) # bhw,1,n
g_acos = g_acos.reshape(n, B * H * W, 1).permute(1, 2, 0)
# reverse the impulse response
k_sin = torch.flip(k_sin, dims=(-1,))
k_cos = torch.flip(k_cos, dims=(-1,))
#
a = F.conv1d(g_acos, k_sin, padding="valid", bias=None)
b = F.conv1d(g_asin, k_cos, padding="valid", bias=None)
g_o = a + b
a = F.conv1d(g_acos, k_cos, padding="valid", bias=None)
b = F.conv1d(g_asin, k_sin, padding="valid", bias=None)
g_e = a - b
energy_component = g_o ** 2 + g_e ** 2 + self.spontaneous_firing.square()
energy_component = energy_component.reshape(B, H, W, a.size(-1)).permute(0, 3, 1, 2)
if self._average_time: # average motion energy across time
total_channel = scale * self.spatial_num + channel
pooling = self.temporal_pooling[total_channel][None, ..., None, None]
energy_component = abs(torch.mean(energy_component * pooling, dim=1, keepdim=True))
energy_list.append(energy_component)
energy_list = torch.cat(energy_list, dim=1)
return energy_list
def forward(self, image_list):
_, _, H, W = image_list[0].shape
MT_size = (H // 8, W // 8)
self.cell_index = 0
with torch.no_grad():
if image_list[0].max() > 10:
image_list = [img / 255.0 for img in image_list] # [B, 1, H, W] 0-1
# I_mean = torch.cat(image_list, dim=0).mean()
# image_list = [(image - I_mean) for image in image_list]
ms_com = []
for scale in range(self.scale_num):
self.t_sin, self.t_cos = self.temporal_filter[scale].make_temporal_filter()
self.s_sin, self.s_cos = self.spatial_filter[scale].make_gabor_filters(quadrature=True)
st_component = self.infer_scale(image_list, scale)
st_component = F.interpolate(st_component, size=MT_size, mode="bilinear", align_corners=True)
ms_com.append(st_component)
image_list = [F.interpolate(img, scale_factor=self.scale_each_level, mode="bilinear") for img in image_list]
motion_energy = self.normalize(torch.cat(ms_com, dim=1))
# self.visualize_activation(motion_energy)
return motion_energy
def normalize(self, x): # TODO
sum_activation = torch.mean(x, dim=[1], keepdim=True) + torch.square(self.norm_sigma)
x = self.norm_k.abs() * x / sum_activation
return x
def _get_v1_order(self):
thetas = [gabor_scale.thetas for gabor_scale in self.spatial_filter]
fss = [gabor_scale.fs for gabor_scale in self.spatial_filter]
fts = [temporal_scale.ft for temporal_scale in self.temporal_filter]
scale_each_level = self.scale_each_level
scale_num = self.scale_num
neural_representation = []
index = 0
for scale_idx in range(len(thetas)):
theta_scale = thetas[scale_idx]
theta_scale = torch.sigmoid(theta_scale) * 2 * torch.pi # spatial orientation constrain to 0-pi
fs_scale = fss[scale_idx]
fs_scale = torch.sigmoid(fs_scale) * 0.25
fs_scale = fs_scale * (scale_each_level ** scale_idx)
ft_scale = fts[scale_idx]
ft_scale = torch.sigmoid(ft_scale) * 0.25
theta_scale = theta_scale.squeeze().cpu().detach().numpy()
fs_scale = fs_scale.squeeze().cpu().detach().numpy()
ft_scale = ft_scale.squeeze().cpu().detach().numpy()
for gabor_idx in range(len(theta_scale)):
speed = ft_scale[gabor_idx] / fs_scale[gabor_idx]
assert speed >= 0
angle = theta_scale[gabor_idx]
a = {"theta": -angle + np.pi, "fs": fs_scale[gabor_idx], "ft": ft_scale[gabor_idx], "speed": speed,
"index": index}
index = index + 1
neural_representation.append(a)
return neural_representation
def visualize_activation(self, activation, if_log=True):
neural_representation = self._get_v1_order()
activation = activation[:, :, 14:-14, 14:-14] # eliminate boundary
activation = torch.mean(activation, dim=[2, 3], keepdim=False)[0]
ax1 = plt.subplot(111, projection='polar')
theta_list = []
v_list = []
energy_list = []
for index in range(len(neural_representation)):
v = neural_representation[index]["speed"]
theta = neural_representation[index]["theta"]
location = neural_representation[index]["index"]
energy = activation.squeeze()[location].cpu().detach().numpy()
theta_list.append(theta)
v_list.append(v)
energy_list.append(energy)
v_list, theta_list, energy_list = np.array(v_list), np.array(theta_list), np.array(energy_list)
x, y = pol2cart(v_list, theta_list)
plt.scatter(theta_list, v_list, c=energy_list, cmap="rainbow", s=(energy_list + 20), alpha=0.5)
plt.axis('on')
if if_log:
ax1.set_rscale('symlog')
plt.colorbar()
energy_list = np.expand_dims(energy_list, 0).repeat(len(theta_list), 0)
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# read the buffer and convert to an image
image = imageio.imread(buf)
buf.close()
plt.close()
plt.clf()
return image
@staticmethod
def demo():
input = [torch.ones(2, 1, 256, 256).cuda() for k in range(11)]
model = V1(spatial_num=16, scale_num=16, scale_factor=16, kernel_radius=7, num_ft=16,
kernel_size=6, average_time=True).cuda()
for i in range(100):
import time
start = time.time()
with autocast(enabled=True):
x = model(input)
print(x.shape)
torch.mean(x).backward()
end = time.time()
print(end - start)
print("#================================++#")
@property
def num_after_st(self):
return self._num_after_st
class TemporalFilter(nn.Module):
def __init__(self, in_channels=1, num_ft=8, kernel_size=6, random=True):
# 40ms per time unit, 200ms -> 5+1 frames
# use exponential decay plus sin wave
super().__init__()
self.kernel_size = kernel_size
def make_param(in_channels, values, requires_grad=True, dtype=None):
if dtype is None:
dtype = 'float32'
values = numpy.require(values, dtype=dtype)
n = in_channels * len(values)
data = torch.from_numpy(values).view(1, -1)
data = data.repeat(in_channels, 1)
return torch.nn.Parameter(data=data, requires_grad=requires_grad)
indices = torch.arange(kernel_size, dtype=torch.float32)
self.register_buffer('indices', indices)
if random:
self.ft = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.01, 0.99, num_ft)),
requires_grad=True)
self.tao = make_param(in_channels, values=numpy.arange(num_ft) / 2 + 1, requires_grad=True)
else: # evenly distributed
self.ft = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0.01, 0.99, num_ft)),
requires_grad=True)
self.tao = make_param(in_channels, values=numpy.arange(num_ft) / 2 + 1, requires_grad=True)
self.feat_dim = num_ft
self.temporal_decay = 0.2
def make_temporal_filter(self):
fts = torch.sigmoid(self.ft) * 0.25
tao = torch.sigmoid(self.tao) * (-self.kernel_size / np.log(self.temporal_decay))
t = self.indices
fts = fts.view(1, fts.shape[1], 1)
tao = tao.view(1, tao.shape[1], 1)
t = t.view(1, 1, t.shape[0])
temporal_sin = torch.exp(-t / tao) * torch.sin(2 * torch.pi * fts * t)
temporal_cos = torch.exp(-t / tao) * torch.cos(2 * torch.pi * fts * t)
temporal_sin = temporal_sin.view(-1, self.kernel_size)
temporal_cos = temporal_cos.view(-1, self.kernel_size)
temporal_sin = temporal_sin.view(self.feat_dim, 1, self.kernel_size)
temporal_cos = temporal_cos.view(self.feat_dim, 1, self.kernel_size)
# temporal_sin = torch.chunk(temporal_sin, dim=0, chunks=self._feat_dim)
# temporal_cos = torch.chunk(temporal_cos, dim=0, chunks=self._feat_dim)
return temporal_sin, temporal_cos # 1,kz
def demo_temporal_filter(self, points=100):
fts = torch.sigmoid(self.ft) * 0.25
tao = torch.sigmoid(self.tao) * (-(self.kernel_size - 1) / np.log(self.temporal_decay))
t = torch.linspace(self.indices[0], self.indices[-1], steps=points)
fts = fts.view(1, fts.shape[1], 1)
tao = tao.view(1, tao.shape[1], 1)
t = t.view(1, 1, t.shape[0])
print("ft:" + str(fts))
print("tao:" + str(tao))
temporal_sin = torch.exp(-t / tao) * torch.sin(2 * torch.pi * fts * t)
temporal_cos = torch.exp(-t / tao) * torch.cos(2 * torch.pi * fts * t)
temporal_sin = temporal_sin.view(-1, points)
temporal_cos = temporal_cos.view(-1, points)
temporal_sin = temporal_sin.view(self.feat_dim, 1, points)
temporal_cos = temporal_cos.view(self.feat_dim, 1, points)
# temporal_sin = torch.chunk(temporal_sin, dim=0, chunks=self._feat_dim)
# temporal_cos = torch.chunk(temporal_cos, dim=0, chunks=self._feat_dim)
return temporal_sin, temporal_cos # 1,kz
def forward(self, x_sin, x_cos):
in_channels = x_sin.size(1)
n = x_sin.size(2)
# batch, c, sequence
me = []
t_sin, t_cos = self.make_temporal_filter()
for n_t in range(self.feat_dim):
k_sin = t_sin[n_t, ...].expand(in_channels, -1, -1)
k_cos = t_cos[n_t, ...].expand(in_channels, -1, -1)
a = F.conv1d(x_sin, weight=k_cos, padding="same", groups=in_channels, bias=None)
b = F.conv1d(x_cos, weight=k_sin, padding="same", groups=in_channels, bias=None)
g_o = a + b
a = F.conv1d(x_sin, weight=k_sin, padding="same", groups=in_channels, bias=None)
b = F.conv1d(x_cos, weight=k_cos, padding="same", groups=in_channels, bias=None)
g_e = a - b
energy_component = g_o ** 2 + g_e ** 2
me.append(energy_component)
return me
class GaborFilters(nn.Module):
def __init__(self,
in_channels=1,
kernel_radius=7,
num_units=512,
random=True
):
# the total number of or units for each scale
super().__init__()
self.in_channels = in_channels
kernel_size = kernel_radius * 2 + 1
self.kernel_size = kernel_size
self.kernel_radius = kernel_radius
def make_param(in_channels, values, requires_grad=True, dtype=None):
if dtype is None:
dtype = 'float32'
values = numpy.require(values, dtype=dtype)
n = in_channels * len(values)
data = torch.from_numpy(values).view(1, -1)
data = data.repeat(in_channels, 1)
return torch.nn.Parameter(data=data, requires_grad=requires_grad)
# build all learnable parameters
# random distribution
if random:
self.sigmas = make_param(in_channels, inverse_sigmoid(np.random.uniform(0.8, 0.99, num_units)))
self.fs = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.2, 0.8, num_units)))
# maximun is 0.25 cycle/frame
self.gammas = make_param(in_channels, numpy.ones(num_units)) # TODO: fix gamma or not
self.psis = make_param(in_channels, np.zeros(num_units), requires_grad=False) # fix phase
self.thetas = make_param(in_channels, values=inverse_sigmoid(numpy.random.uniform(0.01, 0.99, num_units)),
requires_grad=True)
else: # evenly distribution
self.sigmas = make_param(in_channels, inverse_sigmoid(np.linspace(0.8, 0.99, num_units)))
self.fs = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0.01, 0.99, num_units)))
# maximun is 0.25 cycle/frame
self.gammas = make_param(in_channels, numpy.ones(num_units)) # TODO: fix gamma or not
self.psis = make_param(in_channels, np.zeros(num_units), requires_grad=False) # fix phase
self.thetas = make_param(in_channels, values=inverse_sigmoid(numpy.linspace(0, 1, num_units)),
requires_grad=True)
indices = torch.arange(kernel_size, dtype=torch.float32) - (kernel_size - 1) / 2
self.register_buffer('indices', indices)
self.spatial_decay = 0.5
# number of channels after the conv
self.n_channels_post_conv = num_units
def make_gabor_filters(self, quadrature=True):
sigmas = torch.sigmoid(self.sigmas) * np.sqrt(
(self.kernel_radius - 1) ** 2 * 0.5 / np.log(
1 / self.spatial_decay)) # std of gauss win decay to 0.2 by log(0.2)
fs = torch.sigmoid(self.fs) * 0.25
# frequency of cos and sine wave keep positive, must > 2 to avoid aliasing
gammas = torch.abs(self.gammas) # shape of gauss win, set as 1 by default
psis = self.psis # phase of cos wave
thetas = torch.sigmoid(self.thetas) * 2 * torch.pi # spatial orientation constrain to 0-2pi
y = self.indices
x = self.indices
in_channels = sigmas.shape[0]
assert in_channels == fs.shape[0]
assert in_channels == gammas.shape[0]
kernel_size = y.shape[0], x.shape[0]
sigmas = sigmas.view(in_channels, sigmas.shape[1], 1, 1)
fs = fs.view(in_channels, fs.shape[1], 1, 1)
gammas = gammas.view(in_channels, gammas.shape[1], 1, 1)
psis = psis.view(in_channels, psis.shape[1], 1, 1)
thetas = thetas.view(in_channels, thetas.shape[1], 1, 1)
y = y.view(1, 1, y.shape[0], 1)
x = x.view(1, 1, 1, x.shape[0])
sigma_x = sigmas
sigma_y = sigmas / gammas
sin_t = torch.sin(thetas)
cos_t = torch.cos(thetas)
y_theta = -x * sin_t + y * cos_t
x_theta = x * cos_t + y * sin_t
if quadrature:
gb_cos = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.cos(2.0 * math.pi * x_theta * fs + psis)
gb_sin = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.sin(2.0 * math.pi * x_theta * fs + psis)
gb_cos = gb_cos.reshape(-1, 1, kernel_size[0], kernel_size[1])
gb_sin = gb_sin.reshape(-1, 1, kernel_size[0], kernel_size[1])
# remove DC
gb_cos = gb_cos - torch.sum(gb_cos, dim=[-1, -2], keepdim=True) / (kernel_size[0] * kernel_size[1])
gb_sin = gb_sin - torch.sum(gb_sin, dim=[-1, -2], keepdim=True) / (kernel_size[0] * kernel_size[1])
return gb_sin, gb_cos
else:
gb = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.cos(2.0 * math.pi * x_theta * fs + psis)
gb = gb.view(-1, kernel_size[0], kernel_size[1])
return gb
def forward(self, x):
batch_size = x.size(0)
sy = x.size(2)
sx = x.size(3)
gb_sin, gb_cos = self.make_gabor_filters(quadrature=True)
assert gb_sin.shape[0] == self.n_channels_post_conv
assert gb_sin.shape[2] == self.kernel_size
assert gb_sin.shape[3] == self.kernel_size
gb_sin = gb_sin.view(self.n_channels_post_conv, 1, self.kernel_size, self.kernel_size)
gb_cos = gb_cos.view(self.n_channels_post_conv, 1, self.kernel_size, self.kernel_size)
# flip ke
gb_sin = torch.flip(gb_sin, dims=[-1, -2])
gb_cos = torch.flip(gb_cos, dims=[-1, -2])
res_sin = F.conv2d(input=x, weight=gb_sin,
padding=self.kernel_radius, groups=self.in_channels)
res_cos = F.conv2d(input=x, weight=gb_cos,
padding=self.kernel_radius, groups=self.in_channels)
if self.rotation_invariant:
res_sin = res_sin.view(batch_size, self.in_channels, -1, self.n_thetas, sy, sx)
res_sin, _ = res_sin.max(dim=3)
res_cos = res_cos.view(batch_size, self.in_channels, -1, self.n_thetas, sy, sx)
res_cos, _ = res_cos.max(dim=3)
res_sin = res_sin.view(batch_size, -1, sy, sx)
res_cos = res_cos.view(batch_size, -1, sy, sx)
return res_sin, res_cos
def demo_gabor_filters(self, quadrature=True, points=100):
sigmas = torch.sigmoid(self.sigmas) * np.sqrt(
(self.kernel_radius - 1) ** 2 * 0.5 / np.log(
1 / self.spatial_decay)) # std of gauss win decay to 0.2 by log(0.2)
fs = torch.sigmoid(self.fs) * 0.25
# frequency of cos and sine wave keep positive, must > 2 to avoid aliasing
gammas = torch.abs(self.gammas) # shape of gauss win, set as 1 by default
thetas = torch.sigmoid(self.thetas) * 2 * torch.pi # spatial orientation constrain to 0-2pi
psis = self.psis # phase of cos wave
print("theta:" + str(thetas))
print("fs:" + str(fs))
x = torch.linspace(self.indices[0], self.indices[-1], points)
y = torch.linspace(self.indices[0], self.indices[-1], points)
in_channels = sigmas.shape[0]
assert in_channels == fs.shape[0]
assert in_channels == gammas.shape[0]
kernel_size = y.shape[0], x.shape[0]
sigmas = sigmas.view(in_channels, sigmas.shape[1], 1, 1)
fs = fs.view(in_channels, fs.shape[1], 1, 1)
gammas = gammas.view(in_channels, gammas.shape[1], 1, 1)
psis = psis.view(in_channels, psis.shape[1], 1, 1)
thetas = thetas.view(in_channels, thetas.shape[1], 1, 1)
y = y.view(1, 1, y.shape[0], 1)
x = x.view(1, 1, 1, x.shape[0])
sigma_x = sigmas
sigma_y = sigmas / gammas
sin_t = torch.sin(thetas)
cos_t = torch.cos(thetas)
y_theta = -x * sin_t + y * cos_t
x_theta = x * cos_t + y * sin_t
if quadrature:
gb_cos = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.cos(2.0 * math.pi * x_theta * fs + psis)
gb_sin = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.sin(2.0 * math.pi * x_theta * fs + psis)
gb_cos = gb_cos.reshape(-1, 1, points, points)
gb_sin = gb_sin.reshape(-1, 1, points, points)
# remove DC
gb_cos = gb_cos - torch.sum(gb_cos, dim=[-1, -2], keepdim=True) / (points * points)
gb_sin = gb_sin - torch.sum(gb_sin, dim=[-1, -2], keepdim=True) / (points * points)
return gb_sin, gb_cos
else:
gb = torch.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) \
* torch.cos(2.0 * math.pi * x_theta * fs + psis)
gb = gb.view(-1, kernel_size[0], kernel_size[1])
return gb
def te_gabor_(num_units=48):
s_point = 100
s_kz = 7
gb_sin, gb_cos = GaborFilters(num_units=num_units, kernel_radius=s_kz).demo_gabor_filters(points=s_point)
gb = gb_sin ** 2 + gb_cos ** 2
print(gb_sin.shape)
for c in range(gb_sin.size(0)):
plt.subplot(1, 3, 1)
curve = gb_cos[c].detach().cpu().squeeze().numpy()
plt.imshow(curve)
plt.subplot(1, 3, 2)
curve = gb_sin[c].detach().cpu().squeeze().numpy()
plt.imshow(curve)
plt.subplot(1, 3, 3)
curve = gb[c].detach().cpu().squeeze().numpy()
plt.imshow(curve)
plt.show()
def te_spatial_temporal():
t_point = 6 * 100
s_point = 14 * 100
s_kz = 7
t_kz = 6
filenames = []
gb_sin_b, gb_cos_b = GaborFilters(num_units=48, kernel_radius=s_kz).demo_gabor_filters(points=s_point)
temporal = TemporalFilter(num_ft=2, kernel_size=t_kz)
t_sin, t_cos = temporal.demo_temporal_filter(points=t_point)
x = np.linspace(0, t_kz, t_point)
index = 0
for i in range(gb_sin_b.size(0)):
for j in range(t_sin.size(0)):
plt.figure(figsize=(14, 9), dpi=80)
plt.subplot(2, 3, 1)
curve = gb_sin_b[i].squeeze().detach().numpy()
plt.imshow(curve)
plt.title("Gabor Sin")
plt.subplot(2, 3, 2)
curve = gb_cos_b[i].squeeze().detach().numpy()
plt.imshow(curve)
plt.title("Gabor Cos")
plt.subplot(2, 3, 3)
curve = t_sin[j].squeeze().detach().numpy()
plt.plot(x, curve, label='sin')
plt.title("Temporal Sin")
curve = t_cos[j].squeeze().detach().numpy()
plt.plot(x, curve, label='cos')
plt.xlabel('Time (s)')
plt.ylabel('Response to pulse at t=0')
plt.legend()
plt.title("Temporal filter")
gb_sin = gb_sin_b[i].squeeze().detach()[5, :]
gb_cos = gb_cos_b[i].squeeze().detach()[5, :]
a = np.outer(t_cos[j].detach(), gb_sin)
b = np.outer(t_sin[j].detach(), gb_cos)
g_o = a + b
a = np.outer(t_sin[j].detach(), gb_sin)
b = np.outer(t_cos[j].detach(), gb_cos)
g_e = a - b
energy_component = g_o ** 2 + g_e ** 2
plt.subplot(2, 3, 4)
curve = g_o
plt.imshow(curve, cmap="gray")
plt.title("Spatial Temporal even")
plt.subplot(2, 3, 5)
curve = g_e
plt.imshow(curve, cmap="gray")
plt.title("Spatial Temporal odd")
plt.subplot(2, 3, 6)
curve = energy_component
plt.imshow(curve, cmap="gray")
plt.title("energy")
plt.savefig('filter_%d.png' % (index))
filenames.append('filter_%d.png' % (index))
index += 1
plt.show()
# build gif
with imageio.get_writer('filters_orientation.gif', mode='I') as writer:
for filename in filenames:
image = imageio.imread(filename)
writer.append_data(image)
# Remove files
for filename in set(filenames):
os.remove(filename)
def te_temporal_():
k_size = 6
temporal = TemporalFilter(n_tao=2, num_ft=8, kernel_size=k_size)
sin, cos = temporal.demo_temporal_filter()
print(sin.shape)
x = np.linspace(0, k_size, k_size * 100)
# plot temporal filters to illustrate what they look like.
for c in range(sin.size(0)):
curve = cos[c].detach().cpu().squeeze().numpy()
plt.plot(x, curve, label='cos')
curve = sin[c].detach().cpu().squeeze().numpy()
plt.plot(x, curve, label='sin')
plt.xlabel('Time (s)')
plt.ylabel('Response to pulse at t=0')
plt.legend()
plt.show()
def circular_hist(ax, x, bins=16, density=True, offset=0, gaps=True):
"""
Produce a circular histogram of angles on ax.
Parameters
----------
ax : matplotlib.axes._subplots.PolarAxesSubplot
axis instance created with subplot_kw=dict(projection='polar').
x : array
Angles to plot, expected in units of radians.
bins : int, optional
Defines the number of equal-width bins in the range. The default is 16.
density : bool, optional
If True plot frequency proportional to area. If False plot frequency
proportional to radius. The default is True.
offset : float, optional
Sets the offset for the location of the 0 direction in units of
radians. The default is 0.
gaps : bool, optional
Whether to allow gaps between bins. When gaps = False the bins are
forced to partition the entire [-pi, pi] range. The default is True.
Returns
-------
n : array or list of arrays
The number of values in each bin.
bins : array
The edges of the bins.
patches : `.BarContainer` or list of a single `.Polygon`
Container of individual artists used to create the histogram
or list of such containers if there are multiple input datasets.
"""
# Wrap angles to [-pi, pi)
x = (x + np.pi) % (2 * np.pi) - np.pi
# Force bins to partition entire circle
if not gaps:
bins = np.linspace(-np.pi, np.pi, num=bins + 1)
# Bin data and record counts
n, bins = np.histogram(x, bins=bins)
# Compute width of each bin
widths = np.diff(bins)
# By default plot frequency proportional to area
if density:
# Area to assign each bin
area = n / x.size
# Calculate corresponding bin radius
radius = (area / np.pi) ** .5
# Otherwise plot frequency proportional to radius
else:
radius = n
# Plot data on ax
patches = ax.bar(bins[:-1], radius, zorder=1, align='edge', width=widths,
edgecolor='C0', fill=False, linewidth=1)
# Set the direction of the zero angle
ax.set_theta_offset(offset)
# Remove ylabels for area plots (they are mostly obstructive)
if density:
ax.set_yticks([])
return n, bins, patches
|