Spaces:
Configuration error
Configuration error
File size: 7,321 Bytes
166496c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed
from omegaconf import OmegaConf
import torch
from diffusers.utils.import_utils import is_xformers_available
import torchvision
from utils import mask_generation_before
import os
import cv2
config_path = "/mnt/petrelfs/zhouyan/project/i2v/configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
# ------- get model ---------------
# model_i2V = model_i2v_fun()
# model_i2V.to("cuda")
# vae, model, text_encoder, diffusion = model_i2v_fun(args)
# vae.to(device)
# model.to(device)
# text_encoder.to(device)
# if args.use_fp16:
# vae.to(dtype=torch.float16)
# model.to(dtype=torch.float16)
# text_encoder.to(dtype=torch.float16)
# if args.enable_xformers_memory_efficient_attention and device=="cuda":
# if is_xformers_available():
# model.enable_xformers_memory_efficient_attention()
# else:
# raise ValueError("xformers is not available. Make sure it is installed correctly")
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
def infer(prompt, image_inp, seed_inp, ddim_steps):
setup_seed(seed_inp)
args.num_sampling_steps = ddim_steps
###先测试Image的返回类型
print(prompt, seed_inp, ddim_steps, type(image_inp))
img = cv2.imread(image_inp)
new_size = [img.shape[0],img.shape[1]]
# if(img.shape[0]==512 and img.shape[1]==512):
# args.image_size = [512,512]
# elif(img.shape[0]==320 and img.shape[1]==512):
# args.image_size = [320, 512]
# elif(img.shape[0]==292 and img.shape[1]==512):
# args.image_size = [292,512]
# else:
# raise ValueError("Please enter image of right size")
# print(args.image_size)
args.image_size = new_size
vae, model, text_encoder, diffusion = model_i2v_fun(args)
vae.to(device)
model.to(device)
text_encoder.to(device)
if args.use_fp16:
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
if args.enable_xformers_memory_efficient_attention and device=="cuda":
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
video_input, reserve_frames = get_input(image_inp, args)
video_input = video_input.to(device).unsqueeze(0)
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
masked_video = video_input * (mask == 0)
prompt = "tilt up, high quality, stable "
prompt = prompt + args.additional_prompt
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8)
# video = model_i2V(prompt, image_inp, seed_inp, ddim_steps)
return os.path.join(args.save_img_path, prompt+ '.mp4')
def clean():
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
return gr.Video.update(value=None)
title = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
SEINE: Image-to-Video generation
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Apply SEINE to generate a video
</p>
</div>
"""
with gr.Blocks(css='style.css') as demo:
gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>")
with gr.Column(elem_id="col-container"):
# gr.HTML(title)
with gr.Row():
with gr.Column():
image_inp = gr.Image(type='filepath')
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
with gr.Row():
# control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in")
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
submit_btn = gr.Button("Generate video")
clean_btn = gr.Button("Clean video")
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
inputs = [prompt,image_inp, seed_inp, ddim_steps]
outputs = [video_out]
ex = gr.Examples(
examples = [["/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,50],
["/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,50],
["/mnt/petrelfs/zhouyan/project/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,50]],
fn = infer,
inputs = [image_inp, prompt, seed_inp, ddim_steps],
outputs=[video_out],
cache_examples=False
)
ex.dataset.headers = [""]
# gr.Markdown("<center>some examples</center>")
# with gr.Row():
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea_.jpg")
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/The_picture_shows_the_beauty_of_the_sea.png")
# gr.Image(value="/mnt/petrelfs/zhouyan/project/i2v/Close-up_essence_is_poured_from_bottleKodak_Vision.png")
# with gr.Row():
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_11301.mp4")
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/The-picture-shows-the-beauty-of-the-sea-and-at-the-sam_slow-motion_0000_6600.mp4")
# gr.Video(value="/mnt/petrelfs/zhouyan/project/i2v/Close-up-essence-is-poured-from-bottleKodak-Vision3-50_slow-motion_0000_001.mp4")
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
submit_btn.click(infer, inputs, outputs)
# share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=12).launch(server_name="0.0.0.0",server_port=7861)
|