Spaces:
Runtime error
Runtime error
File size: 27,470 Bytes
24d19d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
import torchvision
# from torch_utils.ops import grid_sample_gradfix
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention import FeedForward
# from diffusers.models.attention_processor import Attention
try:
from .diffusers_attention import CrossAttention
from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
except:
from diffusers_attention import CrossAttention
from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN
from einops import rearrange, repeat
import math
import pdb
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def grid_sample_align(input, grid):
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True)
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class EmptyTemporalModule3D(nn.Module):
def __init__(self):
super().__init__()
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
return hidden_states
class TemporalModule3D(nn.Module):
def __init__(
self,
in_channels=None,
out_channels=None,
num_attention_layers=None,
num_attention_head=8,
attention_head_dim=None,
cross_attention_dim=768,
temb_channels=512,
dropout=0.,
attention_bias=False,
activation_fn="geglu",
only_cross_attention=False,
upcast_attention=False,
norm_num_groups=8,
use_linear_projection=True,
use_scale_shift=False, # set True always produce nan loss, I don't know why
attention_block_types: Tuple[str]=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
attention_dim_div: int = None,
video_condition=False,
):
super().__init__()
assert len(attention_block_types) == 2
self.use_scale_shift = use_scale_shift
self.video_condition = video_condition
self.non_linearity = nn.SiLU()
# 1. 3d cnn
if self.video_condition:
video_condition_dim = int(out_channels//4)
self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32)
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
else:
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32)
# 2. transformer blocks
if not (attention_block_types[0]=='' and attention_block_types[1]==''):
attentions = TemporalTransformer3DModel(
num_attention_heads=num_attention_head,
attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div,
in_channels=in_channels,
num_layers=num_attention_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
activation_fn=activation_fn,
num_embeds_ada_norm=1000, # adaptive norm for timestep embedding injection
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
self.attentions = nn.ModuleList([attentions])
if use_scale_shift:
self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0))
else:
self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0))
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
input_tensor = hidden_states
if self.video_condition:
# obtain video attention
assert condition_video is not None
if isinstance(condition_video, dict):
condition_video = condition_video[hidden_states.shape[-1]]
hidden_condition = self.v_cond_conv(condition_video, temb)
hidden_states = torch.cat([hidden_states, hidden_condition], dim=1)
# 3DCNN
hidden_states = self.resblocks_3d_t(hidden_states, temb)
hidden_states = self.resblocks_3d_s(hidden_states, temb)
if hasattr(self, "attentions"):
for attn in self.attentions:
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample
if self.use_scale_shift:
hidden_states = self.scale_shift_conv(hidden_states)
scale, shift = torch.chunk(hidden_states, chunks=2, dim=1)
hidden_states = (1 + scale) * input_tensor + shift
else:
hidden_states = self.shift_conv(hidden_states)
hidden_states = input_tensor + hidden_states
return hidden_states
class TemporalTransformer3DModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_attention_heads=None,
attention_head_dim=None,
in_channels=None,
num_layers=None,
dropout=None,
norm_num_groups=None,
cross_attention_dim=None,
attention_bias=None,
activation_fn=None,
num_embeds_ada_norm=None,
use_linear_projection=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# Define input layers
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
upcast_attention=upcast_attention,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
use_dcn_warpping=use_dcn_warpping,
use_deformable_conv=use_deformable_conv,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if use_linear_projection:
self.proj_out = nn.Linear(inner_dim, in_channels)
else:
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
# Input
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
if encoder_hidden_states is not None:
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
timestep=timestep,
video_length=video_length
)
# Output
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
if not return_dict:
return (output,)
return TemporalTransformer3DModelOutput(sample=output)
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim=None,
num_attention_heads=None,
attention_head_dim=None,
dropout=None,
cross_attention_dim=None,
activation_fn=None,
num_embeds_ada_norm=None,
attention_bias=None,
only_cross_attention=None,
upcast_attention=None,
attention_block_types=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
use_dcn_warpping=None,
use_deformable_conv=None,
):
super().__init__()
assert len(attention_block_types) == 2
self.only_cross_attention = only_cross_attention
self.use_ada_layer_norm = num_embeds_ada_norm is not None
self.use_dcn_warpping = use_dcn_warpping
# 1. Spatial-Attn (self)
if not attention_block_types[0] == '':
self.attn_spatial = VersatileSelfAttention(
attention_mode=attention_block_types[0],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_spatial.to_out[0].weight.data)
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
# 2. Temporal-Attn (self)
self.attn_temporal = VersatileSelfAttention(
attention_mode=attention_block_types[1],
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_shift_fold_div=temporal_shift_fold_div,
temporal_shift_direction=temporal_shift_direction,
)
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data)
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
self.dcn_module = WarpModule(
in_channels=dim,
use_deformable_conv=use_deformable_conv,
) if use_dcn_warpping else None
# 3. Feed-forward
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.norm3 = nn.LayerNorm(dim)
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
if hasattr(self, "attn_spatial"):
self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
# 1. Spatial-Attention
if hasattr(self, "attn_spatial") and hasattr(self, "norm1"):
norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
# 2. Temporal-Attention
norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
if not self.use_dcn_warpping:
hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
else:
hidden_states = self.dcn_module(
hidden_states,
offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length),
)
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class VersatileSelfAttention(CrossAttention):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_shift_fold_div=None,
temporal_shift_direction=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None)
assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None)
self.attention_mode = attention_mode
self.cross_frame_attention_mode = cross_frame_attention_mode
self.temporal_shift_fold_div = temporal_shift_fold_div
self.temporal_shift_direction = temporal_shift_direction
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
dropout=0.,
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
def temporal_token_concat(self, tensor, video_length):
# print("### temporal token concat")
current_frame_index = torch.arange(video_length)
former_frame_index = current_frame_index - 1
former_frame_index[0] = 0
later_frame_index = current_frame_index + 1
later_frame_index[-1] = -1
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
if self.cross_frame_attention_mode == "0_i-1":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "0_i-1_i":
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
elif self.cross_frame_attention_mode == "i-1_i_i+1":
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2)
else:
raise NotImplementedError
tensor = rearrange(tensor, "b f d c -> (b f) d c")
return tensor
def temporal_shift(self, tensor, video_length):
# print("### temporal shift")
# (b f) d c
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
n_channels = tensor.shape[-1]
fold = n_channels // self.temporal_shift_fold_div
if self.temporal_shift_direction != "right":
raise NotImplementedError
tensor_out = torch.zeros_like(tensor)
tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold]
tensor_out[:, :, :, fold:] = tensor[:, :, :, fold:]
tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c")
return tensor_out
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
# pdb.set_trace()
batch_size, sequence_length, _ = hidden_states.shape
assert encoder_hidden_states is None
# (b f) d c
if self.attention_mode == "Temporal":
# print("### temporal reshape")
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
encoder_hidden_states = encoder_hidden_states
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = self.to_q(hidden_states)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
if self.added_kv_proj_dim is not None:
raise NotImplementedError
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
if self.attention_mode == "SpatialTemporalShift":
key = self.temporal_shift(key, video_length=video_length)
value = self.temporal_shift(value, video_length=video_length)
elif self.attention_mode == "CrossFrame":
key = self.temporal_token_concat(key, video_length=video_length)
value = self.temporal_token_concat(value, video_length=video_length)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
if attention_mask.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
hidden_states = self._attention(query, key, value, attention_mask)
else:
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
if self.attention_mode == "Temporal":
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
class WarpModule(nn.Module):
def __init__(
self,
in_channels=None,
use_deformable_conv=None,
):
super().__init__()
self.use_deformable_conv = use_deformable_conv
self.conv = None
self.dcn_weight = None
if use_deformable_conv:
self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1)
self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3))
self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1))
else:
self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1))
def forward(self, hidden_states, offset_hidden_states):
# (b f) d c
spatial_dim = hidden_states.shape[1]
size = int(spatial_dim ** 0.5)
assert size ** 2 == spatial_dim
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size)
offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size)
concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1)
input_tensor = hidden_states
if self.use_deformable_conv:
offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1)
offsets_mask = offsets_mask.sigmoid() * 2
offsets = torch.cat([offset_x, offset_y], dim=1)
hidden_states = torchvision.ops.deform_conv2d(
hidden_states,
offset=offsets,
weight=self.dcn_weight,
mask=offsets_mask,
padding=1,
)
hidden_states = self.alpha * hidden_states + input_tensor
else:
offsets = self.conv(concat_hidden_states)
hidden_states = self.optical_flow_warping(hidden_states, offsets)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
return hidden_states
@staticmethod
def optical_flow_warping(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample
"zeros": use 0 for out-of-bound grid locations,
"border": use border values for out-of-bound grid locations
"""
dtype = x.dtype
if dtype != torch.float32:
x = x.to(torch.float32)
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
grid = torch.cat((xx, yy), 1).float().to(flo.device)
vgrid = grid + flo
# scale grid to [-1,1]
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0
vgrid = vgrid.permute(0, 2, 3, 1)
# output = grid_sample_gradfix.grid_sample_align(x, vgrid)
output = grid_sample_align(x, vgrid)
#output = torch.nn.functional.grid_sample(x, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask = torch.ones_like(x)
# mask = grid_sample_gradfix.grid_sample_align(mask, vgrid)
mask = grid_sample_align(x, vgrid)
#mask = torch.nn.functional.grid_sample(mask, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)
mask[mask < 0.9999] = 0
mask[mask > 0] = 1
results = output * mask
if dtype != torch.float32:
results = results.to(dtype)
return results
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0])
emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) # (b f) 1 2d
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
|