File size: 27,470 Bytes
24d19d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
import torchvision
# from torch_utils.ops import grid_sample_gradfix

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from diffusers.models.attention import FeedForward
# from diffusers.models.attention_processor import Attention

try:
    from .diffusers_attention import CrossAttention
    from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN

except:
    from diffusers_attention import CrossAttention
    from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN

from einops import rearrange, repeat
import math

import pdb


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


def grid_sample_align(input, grid):
    return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True)


@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


class EmptyTemporalModule3D(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
        return hidden_states


class TemporalModule3D(nn.Module):
    def __init__(
        self,
        in_channels=None,
        out_channels=None,

        num_attention_layers=None,
        num_attention_head=8,
        attention_head_dim=None,
        cross_attention_dim=768,
        temb_channels=512,

        dropout=0.,
        attention_bias=False,
        activation_fn="geglu",
        only_cross_attention=False,
        upcast_attention=False,

        norm_num_groups=8,
        use_linear_projection=True,
        use_scale_shift=False, # set True always produce nan loss, I don't know why

        attention_block_types: Tuple[str]=None,
        cross_frame_attention_mode=None,
        temporal_shift_fold_div=None,
        temporal_shift_direction=None,

        use_dcn_warpping=None,
        use_deformable_conv=None,

        attention_dim_div: int = None,
        video_condition=False,
    ):
        super().__init__()
        assert len(attention_block_types) == 2

        self.use_scale_shift = use_scale_shift
        self.video_condition = video_condition
        
        self.non_linearity = nn.SiLU()
        
        # 1. 3d cnn
        if self.video_condition:
            video_condition_dim = int(out_channels//4)
            self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32)
            self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
        else:
            self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels)
        
        self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32)
        
        # 2. transformer blocks
        if not (attention_block_types[0]=='' and attention_block_types[1]==''):
            attentions = TemporalTransformer3DModel(
                num_attention_heads=num_attention_head,
                attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div,

                in_channels=in_channels,
                num_layers=num_attention_layers,
                dropout=dropout,
                norm_num_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attention_bias=attention_bias,
                activation_fn=activation_fn,
                num_embeds_ada_norm=1000, # adaptive norm for timestep embedding injection
                use_linear_projection=use_linear_projection,

                only_cross_attention=only_cross_attention,
                upcast_attention=upcast_attention,

                attention_block_types=attention_block_types,
                cross_frame_attention_mode=cross_frame_attention_mode,
                temporal_shift_fold_div=temporal_shift_fold_div,
                temporal_shift_direction=temporal_shift_direction,

                use_dcn_warpping=use_dcn_warpping,
                use_deformable_conv=use_deformable_conv,
            )
            self.attentions = nn.ModuleList([attentions])

        if use_scale_shift:
            self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0))
        else:
            self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0))


    def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None):
        input_tensor = hidden_states
        
        if self.video_condition:
            # obtain video attention
            assert condition_video is not None
            if isinstance(condition_video, dict):
                condition_video = condition_video[hidden_states.shape[-1]]
            hidden_condition = self.v_cond_conv(condition_video, temb)
            hidden_states = torch.cat([hidden_states, hidden_condition], dim=1)
            
        # 3DCNN
        hidden_states = self.resblocks_3d_t(hidden_states, temb)
        hidden_states = self.resblocks_3d_s(hidden_states, temb)
        
        if hasattr(self, "attentions"):
            for attn in self.attentions:
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample

        if self.use_scale_shift:
            hidden_states = self.scale_shift_conv(hidden_states)
            scale, shift = torch.chunk(hidden_states, chunks=2, dim=1)
            hidden_states = (1 + scale) * input_tensor + shift
        else:
            hidden_states = self.shift_conv(hidden_states)
            hidden_states = input_tensor + hidden_states

        return hidden_states


class TemporalTransformer3DModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_attention_heads=None,
        attention_head_dim=None,
        in_channels=None,
        num_layers=None,
        dropout=None,
        norm_num_groups=None,
        cross_attention_dim=None,
        attention_bias=None,
        activation_fn=None,
        num_embeds_ada_norm=None,
        use_linear_projection=None,
        only_cross_attention=None,
        upcast_attention=None,

        attention_block_types=None,
        cross_frame_attention_mode=None,
        temporal_shift_fold_div=None,
        temporal_shift_direction=None,

        use_dcn_warpping=None,
        use_deformable_conv=None,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # Define input layers
        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,

                    attention_block_types=attention_block_types,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_shift_fold_div=temporal_shift_fold_div,
                    temporal_shift_direction=temporal_shift_direction,

                    use_dcn_warpping=use_dcn_warpping,
                    use_deformable_conv=use_deformable_conv,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(inner_dim, in_channels)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
        # Input
        assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
        if encoder_hidden_states is not None:
            encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)

        batch, channel, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        # Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                video_length=video_length
            )

        # Output
        if not self.use_linear_projection:
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            )
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = (
                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
            )

        output = hidden_states + residual

        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
        if not return_dict:
            return (output,)

        return TemporalTransformer3DModelOutput(sample=output)


class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim=None,
        num_attention_heads=None,
        attention_head_dim=None,
        dropout=None,
        cross_attention_dim=None,
        activation_fn=None,
        num_embeds_ada_norm=None,
        attention_bias=None,
        only_cross_attention=None,
        upcast_attention=None,

        attention_block_types=None,
        cross_frame_attention_mode=None,
        temporal_shift_fold_div=None,
        temporal_shift_direction=None,

        use_dcn_warpping=None,
        use_deformable_conv=None,
    ):
        super().__init__()
        assert len(attention_block_types) == 2

        self.only_cross_attention = only_cross_attention
        self.use_ada_layer_norm = num_embeds_ada_norm is not None
        self.use_dcn_warpping = use_dcn_warpping

        # 1. Spatial-Attn (self)
        if not attention_block_types[0] == '':
            self.attn_spatial = VersatileSelfAttention(
                attention_mode=attention_block_types[0],

                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,

                cross_frame_attention_mode=cross_frame_attention_mode,
                temporal_shift_fold_div=temporal_shift_fold_div,
                temporal_shift_direction=temporal_shift_direction,
            )
            nn.init.zeros_(self.attn_spatial.to_out[0].weight.data)
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        # 2. Temporal-Attn (self)
        self.attn_temporal = VersatileSelfAttention(
            attention_mode=attention_block_types[1],

            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,

            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_shift_fold_div=temporal_shift_fold_div,
            temporal_shift_direction=temporal_shift_direction,
        )
        nn.init.zeros_(self.attn_temporal.to_out[0].weight.data)
        self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)

        self.dcn_module = WarpModule(
            in_channels=dim,
            use_deformable_conv=use_deformable_conv,
        ) if use_dcn_warpping else None

        # 3. Feed-forward
        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
        self.norm3 = nn.LayerNorm(dim)


    def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None):
        if not is_xformers_available():
            print("Here is how to install it")
            raise ModuleNotFoundError(
                "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                " xformers",
                name="xformers",
            )
        elif not torch.cuda.is_available():
            raise ValueError(
                "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
                " available for GPU "
            )
        else:
            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            if hasattr(self, "attn_spatial"):
                self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers

    def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
        # 1. Spatial-Attention
        if hasattr(self, "attn_spatial") and hasattr(self, "norm1"):
            norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
            hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states

        # 2. Temporal-Attention
        norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
        if not self.use_dcn_warpping:
            hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
        else:
            hidden_states = self.dcn_module(
                hidden_states, 
                offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length),
            )

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        return hidden_states


class VersatileSelfAttention(CrossAttention):
    def __init__(
            self,
            attention_mode=None,
            cross_frame_attention_mode=None,
            temporal_shift_fold_div=None,
            temporal_shift_direction=None,
            temporal_position_encoding=False,
            temporal_position_encoding_max_len=24,
            *args, **kwargs
        ):
        super().__init__(*args, **kwargs)
        assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None)
        assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None)

        self.attention_mode = attention_mode

        self.cross_frame_attention_mode = cross_frame_attention_mode

        self.temporal_shift_fold_div = temporal_shift_fold_div
        self.temporal_shift_direction = temporal_shift_direction
        
        self.pos_encoder = PositionalEncoding(
            kwargs["query_dim"], 
            dropout=0., 
            max_len=temporal_position_encoding_max_len
        ) if temporal_position_encoding else None

    def temporal_token_concat(self, tensor, video_length):
        # print("### temporal token concat")
        current_frame_index = torch.arange(video_length)
        former_frame_index = current_frame_index - 1
        former_frame_index[0] = 0
        
        later_frame_index = current_frame_index + 1
        later_frame_index[-1] = -1

        # (b f) d c
        tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)

        if self.cross_frame_attention_mode == "0_i-1":
            tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2)
        elif self.cross_frame_attention_mode == "i-1_i":
            tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
        elif self.cross_frame_attention_mode == "0_i-1_i":
            tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2)
        elif self.cross_frame_attention_mode == "i-1_i_i+1":
            tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2)
        else:
            raise NotImplementedError        
        
        tensor = rearrange(tensor, "b f d c -> (b f) d c")
        return tensor

    def temporal_shift(self, tensor, video_length):
        # print("### temporal shift")
        # (b f) d c
        tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length)
        n_channels = tensor.shape[-1]
        fold = n_channels // self.temporal_shift_fold_div

        if self.temporal_shift_direction != "right":
            raise NotImplementedError
        
        tensor_out = torch.zeros_like(tensor)
        tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold]
        tensor_out[:, :, :, fold:]  = tensor[:, :, :, fold:]

        tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c")
        return tensor_out

    def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
        # pdb.set_trace()
        batch_size, sequence_length, _ = hidden_states.shape
        assert encoder_hidden_states is None

        # (b f) d c
        if self.attention_mode == "Temporal":
            # print("### temporal reshape")
            d = hidden_states.shape[1]
            hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
            
            if self.pos_encoder is not None:
                hidden_states = self.pos_encoder(hidden_states)

        encoder_hidden_states = encoder_hidden_states

        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = self.to_q(hidden_states)
        dim = query.shape[-1]
        query = self.reshape_heads_to_batch_dim(query)

        if self.added_kv_proj_dim is not None:
            raise NotImplementedError

        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = self.to_k(encoder_hidden_states)
        value = self.to_v(encoder_hidden_states)

        if self.attention_mode == "SpatialTemporalShift":
            key = self.temporal_shift(key, video_length=video_length)
            value = self.temporal_shift(value, video_length=video_length)
        elif self.attention_mode == "CrossFrame":
            key = self.temporal_token_concat(key, video_length=video_length)
            value = self.temporal_token_concat(value, video_length=video_length)

        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        if attention_mask is not None:
            if attention_mask.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
                attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)

        # attention, what we cannot get enough of
        if self._use_memory_efficient_attention_xformers:
            hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
            # Some versions of xformers return output in fp32, cast it back to the dtype of the input
            hidden_states = hidden_states.to(query.dtype)
        else:
            if self._slice_size is None or query.shape[0] // self._slice_size == 1:
                hidden_states = self._attention(query, key, value, attention_mask)
            else:
                hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)

        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)

        if self.attention_mode == "Temporal":
            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states


class WarpModule(nn.Module):
    def __init__(
        self,
        in_channels=None,
        use_deformable_conv=None,
    ):
        super().__init__()
        self.use_deformable_conv = use_deformable_conv

        self.conv = None
        self.dcn_weight = None
        if use_deformable_conv:
            self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1)
            self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3))
            self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1))
        else:
            self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1))

    def forward(self, hidden_states, offset_hidden_states):
        # (b f) d c
        spatial_dim = hidden_states.shape[1]
        size = int(spatial_dim ** 0.5)
        assert size ** 2 == spatial_dim

        hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size)
        offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size)
        
        concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1)

        input_tensor = hidden_states
        if self.use_deformable_conv:
            offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1)
            offsets_mask = offsets_mask.sigmoid() * 2
            offsets = torch.cat([offset_x, offset_y], dim=1)
            hidden_states = torchvision.ops.deform_conv2d(
                hidden_states,
                offset=offsets,
                weight=self.dcn_weight,
                mask=offsets_mask,
                padding=1,
            )
            hidden_states = self.alpha * hidden_states + input_tensor

        else:
            offsets = self.conv(concat_hidden_states)
            hidden_states = self.optical_flow_warping(hidden_states, offsets)

        hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
        return hidden_states

    @staticmethod
    def optical_flow_warping(x, flo):
        """
        warp an image/tensor (im2) back to im1, according to the optical flow

        x: [B, C, H, W] (im2)
        flo: [B, 2, H, W] flow
        pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample
            "zeros": use 0 for out-of-bound grid locations,
            "border": use border values for out-of-bound grid locations
        """
        dtype = x.dtype
        if dtype != torch.float32:
            x = x.to(torch.float32)
        B, C, H, W = x.size()
        # mesh grid
        xx = torch.arange(0, W).view(1, -1).repeat(H, 1)
        yy = torch.arange(0, H).view(-1, 1).repeat(1, W)
        xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1)
        yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1)
        grid = torch.cat((xx, yy), 1).float().to(flo.device)

        vgrid = grid + flo

        # scale grid to [-1,1]
        vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0
        vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0

        vgrid = vgrid.permute(0, 2, 3, 1)
        # output = grid_sample_gradfix.grid_sample_align(x, vgrid)
        output = grid_sample_align(x, vgrid)
        #output = torch.nn.functional.grid_sample(x, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)

        mask = torch.ones_like(x)
        # mask = grid_sample_gradfix.grid_sample_align(mask, vgrid)
        mask = grid_sample_align(x, vgrid)
        #mask = torch.nn.functional.grid_sample(mask, vgrid, padding_mode='zeros', mode='bilinear', align_corners=True)

        mask[mask < 0.9999] = 0
        mask[mask > 0] = 1
        results = output * mask
        if dtype != torch.float32:
            results = results.to(dtype)
        return results


class AdaLayerNorm(nn.Module):
    """
    Norm layer modified to incorporate timestep embeddings.
    """
    def __init__(self, embedding_dim, num_embeddings):
        super().__init__()
        self.emb = nn.Embedding(num_embeddings, embedding_dim)
        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)

    def forward(self, x, timestep):
        timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0])

        emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) # (b f) 1 2d
        scale, shift = torch.chunk(emb, 2, dim=-1)
        x = self.norm(x) * (1 + scale) + shift
        return x