File size: 14,210 Bytes
aa7fb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import argparse
import datetime
import json
import random
import time
import math
import os
import numpy as np
from pathlib import Path
import torch
from nltk.translate import bleu_score
import dataset.data_loader
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, DistributedSampler
import torchvision.transforms as transforms
from models import prefixLM, tokenizer
import nltk
import jieba
# from engine import train_one_epoch, validate
#
# import utils.misc as utils
from models import __init__
# from dataset import build_dataset
# from engine import train_one_epoch, validate_txt
from einops import rearrange
from pytorch_pretrained_bert.tokenization import BertTokenizer
def get_args_parser():
parser = argparse.ArgumentParser('Set parser', add_help=False)
parser.add_argument('--device', default='cuda')
parser.add_argument('--gpu_id', default='0', type=str)
# Dataset parameters
parser.add_argument('--data_root', type=str, default=r'E:\data\Download\fur\dataset\data_for_test2.csv')
parser.add_argument('--dataset_name', type=str, default='Furniture')
parser.add_argument('--img_root', type=str, default=r'E:\data\pictures')
parser.add_argument('--output_dir', default='./outputs/validate', help='path where to save, empty for no saving')
parser.add_argument('--seed', default=2022, type=int)
parser.add_argument('--resume', default='', help='resume for checkpoint')
parser.add_argument('--bert_model', default='bert-base-chinese', type=str)
parser.add_argument('--des_len', default=256, type=int)
parser.add_argument('--obj_len', default=8, type=int)
parser.add_argument('--tgt_len', default=35, type=int)
# Train parameters
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--optimizer', default='adamw', type=str)
parser.add_argument('--lr_scheduler', default='step', type=str)
parser.add_argument('--lr_drop', default=5, type=int)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--epochs', default=1, type=int)
# Model parameters
parser.add_argument('--AD_hidden_dim', default=256, type=int)
parser.add_argument('--d_model', default=512, type=int)
# visual_model parameters
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
return parser
def main(args):
device = torch.device(args.device)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
std=[0.1673, 0.1695, 0.1705])
the_transforms = transforms.Compose([transforms.Resize((448, 448)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
des_len=args.des_len,
obj_len=args.obj_len,
tgt_len=args.tgt_len,
img_root=args.img_root,
transform=the_transforms)
dataloader_val = DataLoader(dataset_all,
batch_size=args.batch_size,
shuffle=False)
print("data loaded...")
Tokenizer = tokenizer.ChineseTokenizer()
PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
input_resolution=448,
patch_size=16,
num_text_tokens=20000,
txt_seq_len=10000,
heads=4,
enc_depth=8,
dec_depth=8,
d_ff=1024,
dropout=0.1)
model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
model.load_state_dict(torch.load('./outputs/005/checkpoint0019.pth'))
output_dir = Path(args.output_dir)
with (output_dir / "log.txt").open("a") as f:
f.write(str(args) + "\n")
print("start validate...")
start_time = time.time()
# optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=2000)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
for epoch in range(args.start_epoch, args.epochs):
validate_txt(args, model, dataloader_val, device, batch_size=args.batch_size)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Validate time {}'.format(total_time_str))
def validate(img1_id, img2_id, obj, model_path):
parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
args = parser.parse_args()
device = torch.device(args.device)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
std=[0.1673, 0.1695, 0.1705])
the_transforms = transforms.Compose([transforms.Resize((448, 448)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
des_len=args.des_len,
obj_len=args.obj_len,
tgt_len=args.tgt_len,
img_root=args.img_root,
transform=the_transforms)
PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
input_resolution=448,
patch_size=16,
num_text_tokens=20000,
txt_seq_len=10000,
heads=4,
enc_depth=8,
dec_depth=8,
d_ff=1024,
dropout=0.1)
time_1 = time.time()
model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
model.load_state_dict(torch.load(model_path))
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
time_2 = time.time()
print('Load model takes {}s'.format(time_2 - time_1))
out_list = []
label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img1_id, obj, device, tokenizer)
out_list.append([label_txt, output1, output2, output3])
label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img2_id, obj, device, tokenizer)
out_list.append([label_txt, output1, output2, output3])
return out_list
def validate_one_img(model, dataset_all, img_id, obj, device, tokenizer):
# print("start validate...")
start_time = time.time()
end1_time = time.time()
model.eval()
print(obj)
img_data, des, obj_data, target, img_id, obj_given = dataset_all.get_all_from_id(img_id, obj)
print(obj_given)
img_data = img_data.unsqueeze(0).to(device)
des = des.unsqueeze(0).to(device)
obj_given = obj_given.unsqueeze(0).to(device)
label = target.unsqueeze(0).to(device)
img_emed = model.ResNet(img_data)
img_emed = rearrange(img_emed, 'b c h w -> b (h w) c')
img_emed += model.img_pos_embed(img_emed)
des_embed = model.txt_embed(des)
des_embed += model.txt_pos_embed(torch.arange(model.des_len, device=device))
obj_embed = model.txt_embed(obj_given)
obj_embed = obj_embed + model.txt_pos_embed(torch.arange(model.obj_len, device=device))
tgt_txt = torch.zeros(1, 1, dtype=torch.long, device=device) + 101
tgt_txt_embed = model.txt_embed(tgt_txt)
tgt_txt_embed += model.txt_pos_embed(torch.arange(1, device=device) + model.tgt_len)
# M_005
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
sample = torch.argmax(logits, dim=-1)
value, index = logits.topk(3, dim=-1)
sample = index[0][0].unsqueeze(0)
sample_2nd = index[0][1].unsqueeze(0)
sample_3rd = index[0][2].unsqueeze(0)
tgt_txt_2nd = tgt_txt
tgt_txt_3rd = tgt_txt
cur_len = 1
while (cur_len < model.tgt_len and sample != 102): # 102 is the id of [SEP]
tgt_txt = torch.cat((tgt_txt, sample.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
sample = torch.argmax(logits, dim=-1)
label_txt = []
output_txt = []
obj_txt = []
for token in des[0].tolist():
if token > 103:
label_txt.append(token)
for token in tgt_txt[0].tolist():
if token > 103:
output_txt.append(token)
# for token in obj_data[0].tolist():
# if token > 103:
# obj_txt.append(token)
label_txt = tokenizer.convert_ids_to_tokens(label_txt)
label_txt = ''.join(label_txt)
# obj_txt = tokenizer.convert_ids_to_tokens(obj_txt)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output1 = ''.join(output_txt)
# 2nd
cur_len = 1
while (cur_len < model.tgt_len and sample_2nd != 102): # 102 is the id of [SEP]
tgt_txt_2nd = torch.cat((tgt_txt_2nd, sample_2nd.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt_2nd)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
# logits = logits[:, :-26]
# print(logits)
sample_2nd = torch.argmax(logits, dim=-1)
output_txt = []
for token in tgt_txt_2nd[0].tolist():
if token > 103:
output_txt.append(token)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output2 = ''.join(output_txt)
# 3rd
cur_len = 1
while (cur_len < model.tgt_len and sample_3rd != 102): # 102 is the id of [SEP]
tgt_txt_3rd = torch.cat((tgt_txt_3rd, sample_3rd.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt_3rd)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
# logits = logits[:, :-26]
sample_3rd = torch.argmax(logits, dim=-1)
output_txt = []
for token in tgt_txt_3rd[0].tolist():
if token > 103:
output_txt.append(token)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output3 = ''.join(output_txt)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(output1)
print(output2)
print(output3)
print('Validate time {}'.format(total_time_str))
return label_txt, output1, output2, output3
if __name__ == '__main__':
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
# args = parser.parse_args()
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# if args.output_dir:
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# main(args)
model_name = '005'
model_path = r'E:\data\Download\models\attribute_desciption\outputs' + '/' + model_name + '/' + 'checkpoint0019.pth'
objs = ["空间","客厅","卧室","墙面","餐厅","公寓","住宅","沙发","家具","地毯","厨房","书房","背景墙","吊灯","墙",
"卫生间","儿童","床品","装饰","壁纸","地板","窗帘","吊顶","餐椅","别墅","地面","结构","布艺","餐桌","画"]
for obj in objs:
print(obj)
out = validate('550695', '550567', obj, model_path)
sentences1 = out[0][0].replace(';', ',').split(',')
# gt = ""
#
# for i in sentences1:
# if obj in i:
# gt = i
# gt = " ".join(jieba.cut(gt))
# print(gt)
# for i in out[0]:
# i = " ".join(jieba.cut(i))
# print(i)
# print(gt)
# bleu = nltk.translate.bleu_score.sentence_bleu([i], gt)
# print(bleu)
|