File size: 17,872 Bytes
aa7fb02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import argparse
import datetime
import json
import random
import time
import math
import os
import pandas as pd
import numpy as np
from pathlib import Path
import torch
from nltk.translate import bleu_score
import sys
sys.path.append(r"E:\data\streamlit\Model\AttDes")
sys.path.append(r"E:\data\streamlit\Model\CLIP")
from AttDes import dataset
from AttDes.dataset import data_loader
from torch.utils.data import DataLoader, DistributedSampler
import torchvision.transforms as transforms
import AttDes.models as models
from AttDes.models import prefixLM, tokenizer

import nltk
import jieba
# from engine import train_one_epoch, validate
#
# import utils.misc as utils
# from models import __init__
# from dataset import build_dataset
# from engine import train_one_epoch, validate_txt

from einops import rearrange
from pytorch_pretrained_bert.tokenization import BertTokenizer

def get_args_parser():
    parser = argparse.ArgumentParser('Set parser', add_help=False)
    parser.add_argument('--device', default='cuda')
    # parser.add_argument('--gpu_id', default='0', type=str)

    # Dataset parameters
    parser.add_argument('--data_root', type=str, default='/hy-nas/zhanghe/data/fur/txt/data_for_test2.csv')
    parser.add_argument('--dataset_name', type=str, default='Furniture')
    parser.add_argument('--img_root', type=str, default='/hy-nas/zhanghe/data/fur/processed_img')
    parser.add_argument('--output_dir', default='./outputs/validate', help='path where to save, empty for no saving')
    parser.add_argument('--seed', default=2022, type=int)
    parser.add_argument('--resume', default='', help='resume for checkpoint')
    parser.add_argument('--bert_model', default='bert-base-chinese', type=str)
    parser.add_argument('--des_len', default=256, type=int)
    parser.add_argument('--obj_len', default=8, type=int)
    parser.add_argument('--tgt_len', default=35, type=int)


    # Train parameters
    parser.add_argument('--lr', default=1e-4, type=float)
    parser.add_argument('--batch_size', default=1, type=int)
    parser.add_argument('--weight_decay', default=1e-4, type=float)
    parser.add_argument('--optimizer', default='adamw', type=str)
    parser.add_argument('--lr_scheduler', default='step', type=str)
    parser.add_argument('--lr_drop', default=5, type=int)
    parser.add_argument('--start_epoch', default=0, type=int)
    parser.add_argument('--epochs', default=1, type=int)

    # Model parameters
    parser.add_argument('--AD_hidden_dim', default=256, type=int)
    parser.add_argument('--d_model', default=512, type=int)
    # visual_model parameters
    parser.add_argument('--backbone', default='resnet50', type=str,
                        help="Name of the convolutional backbone to use")

    return parser


def main(args):
    device = torch.device(args.device)

    # seed = args.seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # random.seed(seed)
    normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
                                     std=[0.1673, 0.1695, 0.1705])
    the_transforms = transforms.Compose([transforms.Resize((448, 448)),
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         normalize,
                                        ])
    dataset_all = AttDes.dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
                                                      des_len=args.des_len,
                                                      obj_len=args.obj_len,
                                                      tgt_len=args.tgt_len,
                                                      img_root=args.img_root,
                                                      transform=the_transforms)

    dataloader_val = DataLoader(dataset_all,
                                  batch_size=args.batch_size,
                                  shuffle=False)
    print("data loaded...")

    Tokenizer = tokenizer.ChineseTokenizer()
    PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
                              input_resolution=448,
                              patch_size=16,
                              num_text_tokens=20000,
                              txt_seq_len=10000,
                              heads=4,
                              enc_depth=8,
                              dec_depth=8,
                              d_ff=1024,
                              dropout=0.1)
    model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
    model.load_state_dict(torch.load('./outputs/005/checkpoint0019.pth'))

    output_dir = Path(args.output_dir)
    with (output_dir / "log.txt").open("a") as f:
        f.write(str(args) + "\n")

    print("start validate...")
    start_time = time.time()
    # optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
    # lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=2000)
    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
    for epoch in range(args.start_epoch, args.epochs):
        validate_txt(args, model, dataloader_val, device, batch_size=args.batch_size)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Validate time {}'.format(total_time_str))


def load_AttDes_Model(model_path, device):
    parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
    args = parser.parse_args()
    normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
                                     std=[0.1673, 0.1695, 0.1705])
    the_transforms = transforms.Compose([transforms.Resize((448, 448)),
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         normalize,
                                        ])
    dataset_all = data_loader.AttDesDataset(args.data_root, args.dataset_name,
                                                      des_len=args.des_len,
                                                      obj_len=args.obj_len,
                                                      tgt_len=args.tgt_len,
                                                      img_root=args.img_root,
                                                      transform=the_transforms)
    PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
                              input_resolution=448,
                              patch_size=16,
                              num_text_tokens=20000,
                              txt_seq_len=10000,
                              heads=4,
                              enc_depth=8,
                              dec_depth=8,
                              d_ff=1024,
                              dropout=0.1)
    time_1 = time.time()
    model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
    model.load_state_dict(torch.load(model_path))
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    time_2 = time.time()
    print('Load model takes {}s'.format(time_2 - time_1))
    return model, dataset_all, tokenizer



def validate(img1_id, img2_id, obj, model_path):
    parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
    args = parser.parse_args()
    device = torch.device(args.device)
    #
    # seed = args.seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # random.seed(seed)
    normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
                                     std=[0.1673, 0.1695, 0.1705])

    the_transforms = transforms.Compose([transforms.Resize((448, 448)),
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         normalize,
                                        ])
    dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
                                                      des_len=args.des_len,
                                                      obj_len=args.obj_len,
                                                      tgt_len=args.tgt_len,
                                                      img_root=args.img_root,
                                                      transform=the_transforms)
    PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
                              input_resolution=448,
                              patch_size=16,
                              num_text_tokens=20000,
                              txt_seq_len=10000,
                              heads=4,
                              enc_depth=8,
                              dec_depth=8,
                              d_ff=1024,
                              dropout=0.1)
    time_1 = time.time()
    model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
    model.load_state_dict(torch.load(model_path))
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    time_2 = time.time()
    print('Load model takes {}s'.format(time_2 - time_1))
    out_list = []

    label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img1_id, obj, device, tokenizer)
    out_list.append([label_txt, output1, output2, output3])
    label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img2_id, obj, device, tokenizer)
    out_list.append([label_txt, output1, output2, output3])
    return out_list

def get_data_from_csv_by_id(path, id):
    data_csv = pd.read_csv(path, encoding='utf-8')
    # print(data_csv)
    pic_id_list = data_csv['pic_id'].values
    des_list = data_csv['des'].values

    for i in range(len(pic_id_list)):
        if str(pic_id_list[i]) == str(id):
            return des_list[i]

    return ""

def validate_one_img(model, dataset_all, img_ids, obj_given, device, tokenizer):
    batch_size = len(img_ids)
    start_time = time.time()
    model.eval()
    imgs = []
    dess = []
    objs = []
    for i in range(len(img_ids)):
        img, des, obj = dataset_all.get_all_from_id(img_ids[i], obj_given[i])
        # print("get img from id time:", time.time() - start_time)  # 3s
        imgs.append(img)
        dess.append(des)
        objs.append(obj)
    img_data = torch.stack(imgs).to(device)
    des_data = torch.stack(dess).to(device)
    obj_data = torch.stack(objs).to(device)
    # print("get batch time:", time.time() - start_time) # 3s
    img_emed = model.ResNet(img_data)
    img_emed = rearrange(img_emed, 'b c h w -> b (h w) c')
    img_emed += model.img_pos_embed(img_emed)

    des_embed = model.txt_embed(des_data)
    des_embed += model.txt_pos_embed(torch.arange(model.des_len, device=device))
    obj_embed = model.txt_embed(obj_data)
    obj_embed = obj_embed + model.txt_pos_embed(torch.arange(model.obj_len, device=device))


    tgt_txt = torch.zeros(batch_size, 1, dtype=torch.long, device=device) + 101
    tgt_txt_embed = model.txt_embed(tgt_txt)
    tgt_txt_embed += model.txt_pos_embed(torch.arange(1, device=device) + model.tgt_len)

    # M_005
    out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
                         tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
                         tgt_mask=None)
    logits = model.to_logits(out)[:, -1]
    _, index = logits.topk(3, dim=-1)
    # value: tensor([[7.3227, 7.2289, 6.4169],
    #               [9.6868, 7.0598, 6.3911]], device='cuda:0', grad_fn= < TopkBackward0 >)
    # index: tensor([[4677, 2199, 2647],
    #                [4510, 3763, 2145]], device='cuda:0')
    sample_1st = index[:,0]
    sample_2nd = index[:,1]
    sample_3rd = index[:,2]
    tgt_txt0 = tgt_txt
    output_list = []
    # print("get 1,2,3 sample time:", time.time() - start_time) # 0.01s
    for sample in [sample_1st, sample_2nd, sample_3rd]:
        tgt_txt = tgt_txt0
        cur_len = 1
        while (cur_len < model.tgt_len and sample.max() != 102):  # 102 is the id of [SEP]
            tgt_txt = torch.cat((tgt_txt, sample.unsqueeze(1)), dim=-1)
            tgt_txt_embed = model.txt_embed(tgt_txt)
            cur_len += 1
            tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
            # out = model.transformer(prefix, tgt_txt_embed)
            out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
                                 tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
                                 tgt_mask=None)
            logits = model.to_logits(out)[:, -1]
            sample = torch.argmax(logits, dim=-1)
        # print("one batch sentence token time:", time.time() - start_time) # 0.6s
        output_1 = []
        for i in range(batch_size):
            output_txt = []
            for token in tgt_txt[i].tolist():
                if token > 103:
                    output_txt.append(token)
            output_txt = tokenizer.convert_ids_to_tokens(output_txt)
            output_txt = ''.join(output_txt)
            output_1.append(output_txt[1:])
        output_list.append(output_1)
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Validate time {}'.format(total_time_str))
    # print(output_list)
    return output_list


def generate_texts(img_id, obj, model_path):
    parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
    args = parser.parse_args()
    device = torch.device(args.device)
    # seed = args.seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # random.seed(seed)
    normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
                                     std=[0.1673, 0.1695, 0.1705])
    the_transforms = transforms.Compose([transforms.Resize((448, 448)),
                                         transforms.RandomHorizontalFlip(),
                                         transforms.ToTensor(),
                                         normalize,
                                         ])
    dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
                                                    des_len=args.des_len,
                                                    obj_len=args.obj_len,
                                                    tgt_len=args.tgt_len,
                                                    img_root=args.img_root,
                                                    transform=the_transforms)
    PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
                              input_resolution=448,
                              patch_size=16,
                              num_text_tokens=20000,
                              txt_seq_len=10000,
                              heads=4,
                              enc_depth=8,
                              dec_depth=8,
                              d_ff=1024,
                              dropout=0.1)
    time_1 = time.time()
    model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
    model.load_state_dict(torch.load(model_path))
    tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
    time_2 = time.time()
    print('Load model takes {}s'.format(time_2 - time_1))

    print("start generate_texts")
    start_time = time.time()
    end1_time = time.time()
    model.eval()
    img_data, des, obj_data, target, img_id, obj_given = dataset_all.get_all_from_id(img_id, obj)

    img_data = img_data.unsqueeze(0).to(device)
    des = des.unsqueeze(0).to(device)
    obj_given = obj_given.unsqueeze(0).to(device)
    label = target.unsqueeze(0).to(device)

    img_emed = model.ResNet(img_data)

    img_emed = rearrange(img_emed, 'b c h w -> b (h w) c')
    img_emed += model.img_pos_embed(img_emed)

    des_embed = model.txt_embed(des)
    des_embed += model.txt_pos_embed(torch.arange(model.des_len, device=device))
    obj_embed = model.txt_embed(obj_given)
    obj_embed = obj_embed + model.txt_pos_embed(torch.arange(model.obj_len, device=device))
    tgt_txt = torch.zeros(1, 1, dtype=torch.long, device=device) + 101
    tgt_txt_embed = model.txt_embed(tgt_txt)
    tgt_txt_embed += model.txt_pos_embed(torch.arange(1, device=device) + model.tgt_len)

    # M_005
    out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
                         tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
                         tgt_mask=None)




if __name__ == '__main__':
    # os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
    # parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
    # args = parser.parse_args()
    # os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    # if args.output_dir:
    #     Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    # main(args)
    model_name = '005'
    model_path = r'E:\data\Download\models\attribute_desciption\outputs' + '/' + model_name + '/' + 'checkpoint0019.pth'
    obj = ["空间","客厅","卧室","墙面","餐厅","公寓","住宅","沙发","家具","地毯","厨房","书房","背景墙","吊灯","墙",
           "卫生间","儿童","床品","装饰","壁纸","地板","窗帘","吊顶","餐椅","别墅","地面","结构","布艺","餐桌","画"]

    out = generate_texts('550695', obj, model_path)