File size: 11,632 Bytes
aa7fb02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch
import copy
import torch.nn as nn
import torch.nn .functional as F
import numpy as np
import math
#helpers
def clone(module,N):
'''copy the given module N times'''
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def subsequent_mask(size):
attn_shape=(1,size,size)
subsequent_mask=np.triu(np.ones(attn_shape),k=1).astype(bool)
return torch.from_numpy(subsequent_mask)==False
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = clone(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
'''print('q:',query)
print('k:',key)
print('v:',value)'''
nbatchs = query.size(0)
query, key, value = [l(x).view(nbatchs, -1, self.h, self.d_k).transpose(1, 2) \
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(nbatchs, -1, self.h * self.d_k)
return self.linears[-1](x)
class Feedforward(nn.Module):
def __init__(self,d_model,d_ff,dropout=0.1):
super(Feedforward,self).__init__()
self.w_1=nn.Linear(d_model,d_ff)
self.w_2=nn.Linear(d_ff,d_model)
self.dropout=nn.Dropout(dropout)
def forward(self,x):
return self.w_2(self.dropout(F.relu((self.w_1(x)))))
class LayerNorm(nn.Module):
def __init__(self,features,eps=1e-6):
super(LayerNorm,self).__init__()
self.a_2=nn.Parameter(torch.ones(features))
self.b_2=nn.Parameter(torch.zeros(features))
self.eps=eps
def forward(self,x):
mean=x.mean(-1,keepdim=True)
std=x.std(-1,keepdim=True)
return self.a_2*(x-mean)/(std+self.eps)+self.b_2
class Generator(nn.Module):
def __init__(self,d_model,vocab):
super(Generator,self).__init__()
self.proj=nn.Linear(d_model,vocab)
def forward(self,x):
return F.log_softmax(self.proj(x),dim=-1)
# encoderLayer clone numbers times of enc_depth.
# 把encoderLayer重复enc_depth次;
class Encoder(nn.Module):
def __init__(self, layer, N):
'''N encoder layers '''
super(Encoder,self).__init__()
self.layers = clone(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self,x,mask=None):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class SublayerConnection(nn.Module):
'''LayerNorm +subLayer+dropout+residual connection'''
def __init__(self,size,dropout):
super(SublayerConnection,self).__init__()
self.norm=LayerNorm(size)
self.dropout=nn.Dropout(dropout)
def forward(self,x,sublayer):
return x+self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
def __init__(self,size,self_attn,feed_forward,dropout):
'''size is the embedding dimension'''
super(EncoderLayer,self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clone(SublayerConnection(size,dropout),2)
self.size = size
def forward(self,x,mask=None):
x = self.sublayer[0](x, lambda x: self.self_attn(x,x,x,mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
def __init__(self,layer,N):
super(Decoder,self).__init__()
self.layers = clone(layer,N)
self.norm = LayerNorm(layer.size)
def forward(self,x, memory,src_mask=None,tgt_mask=None):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
def __init__(self,size,self_attn,src_attn,feed_forward,dropout):
super(DecoderLayer,self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clone(SublayerConnection(size,dropout),3)
def forward(self,x,memory,src_mask=None,tgt_mask=None):
m = memory
x = self.sublayer[0](x,lambda x: self.self_attn(x,x,x,tgt_mask))
x = self.sublayer[1](x,lambda x: self.src_attn(x,m,m,src_mask))
return self.sublayer[2](x,self.feed_forward)
class CrossAttLayer(nn.Module):
def __init__(self,d_model,self_attn,feed_forward,dropout=0.1):
super(CrossAttLayer, self).__init__()
self.size = d_model
self.self_attn = self_attn
# self.self_attn_0 = copy.deepcopy(self_attn)
self.feed_forward = feed_forward
self.dropout = nn.Dropout(dropout)
self.sublayer = clone(SublayerConnection(d_model, dropout), 2)
# self.sublayer = clone(SublayerConnection(d_model,dropout),3) # 可以改成三层的,第一层是self_attn
def forward(self,q,k,v,src_mask=None):
# k = self.sublayer[0](k, lambda k: self.self_attn_0(k,k,k))
# q = self.sublayer[0](q, lambda q: self.self_attn_0(q,q,q))
# x = self.sublayer[1](q, lambda q: self.self_attn(q,k,k,src_mask))
# x = self.sublayer[2](x, self.feed_forward)
x = self.sublayer[0](q, lambda q: self.self_attn(q,k,k,src_mask))
x = self.sublayer[1](x, self.feed_forward)
return x
class CrossAtt(nn.Module):
def __init__(self, crossAttlayer, N=1):
super(CrossAtt, self).__init__()
self.layers = clone(crossAttlayer,N)
self.norm = LayerNorm(crossAttlayer.size)
def forward(self, q, k, v, src_mask=None):
for crossAttnLayer in self.layers:
q = crossAttnLayer(q, k, v, src_mask)
return self.norm(q)
class Transformer(nn.Module):
def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
super(Transformer,self).__init__()
c = copy.deepcopy
attn = MultiHeadedAttention(heads,d_model)
ff = Feedforward(d_model,d_ff,dropout)
self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
#self.register_buffer('src_mask', src_mask, persistent=False)
#self.register_buffer('tgt_mask', tgt_mask, persistent=False)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self,src_embeded,tgt_embeded,src_mask=None,tgt_mask=None):
return self.decode(self.encode(src_embeded,src_mask),tgt_embeded,src_mask,tgt_mask)
def encode(self,src_embeded,src_mask=None):
return self.encoder(src_embeded,src_mask)
def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)
class ModelOne(nn.Module):
def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
super(ModelOne,self).__init__()
c = copy.deepcopy
attn = MultiHeadedAttention(heads,d_model)
ff = Feedforward(d_model,d_ff,dropout)
self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
#self.register_buffer('src_mask', src_mask, persistent=False)
#self.register_buffer('tgt_mask', tgt_mask, persistent=False)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
# x = self.CrossAtt(q, img_embed, img_embed)
# x2 = self.CrossAtt(q, des_embed, des_embed)
des_embed_self = self.CrossAtt(des_embed, des_embed, des_embed)
x3 = self.CrossAtt(img_embed, des_embed_self, des_embed_self)
# src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
src_embeded = torch.cat((x3, obj_embed), dim=1)
x = self.encode(src_embeded,src_mask)
x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
return x
def encode(self,src_embeded,src_mask=None):
return self.encoder(src_embeded,src_mask)
def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)
class Model005(nn.Module):
def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
super(Model005,self).__init__()
c = copy.deepcopy
attn = MultiHeadedAttention(heads,d_model)
ff = Feedforward(d_model,d_ff,dropout)
self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
x = self.CrossAtt(q, img_embed, img_embed)
src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
x = self.encode(src_embeded,src_mask)
x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
return x
def encode(self,src_embeded,src_mask=None):
return self.encoder(src_embeded,src_mask)
def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)
class Model006(nn.Module):
def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
super(Model006,self).__init__()
c = copy.deepcopy
attn = MultiHeadedAttention(heads,d_model)
ff = Feedforward(d_model,d_ff,dropout)
self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
x = self.CrossAtt(img_embed, img_embed, img_embed)
x = self.CrossAtt(obj_embed, x, x)
src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
x = self.encode(src_embeded,src_mask)
x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
return x
def encode(self,src_embeded,src_mask=None):
return self.encoder(src_embeded,src_mask)
def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)
|