File size: 11,632 Bytes
aa7fb02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
import copy
import torch.nn as nn
import torch.nn .functional as F
import numpy as np
import math
#helpers
def clone(module,N):
    '''copy the given module N times'''
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def subsequent_mask(size):
    attn_shape=(1,size,size)
    subsequent_mask=np.triu(np.ones(attn_shape),k=1).astype(bool)
    return torch.from_numpy(subsequent_mask)==False


def attention(query, key, value, mask=None, dropout=None):
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim=-1)
    if dropout is not None:
        p_attn = dropout(p_attn)
    return torch.matmul(p_attn, value), p_attn


class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        self.d_k = d_model // h
        self.h = h
        self.linears = clone(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        if mask is not None:
            mask = mask.unsqueeze(1)
        '''print('q:',query)
        print('k:',key)
        print('v:',value)'''
        nbatchs = query.size(0)
        query, key, value = [l(x).view(nbatchs, -1, self.h, self.d_k).transpose(1, 2) \
                             for l, x in zip(self.linears, (query, key, value))]
        x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
        x = x.transpose(1, 2).contiguous().view(nbatchs, -1, self.h * self.d_k)
        return self.linears[-1](x)

class Feedforward(nn.Module):
    def __init__(self,d_model,d_ff,dropout=0.1):
        super(Feedforward,self).__init__()
        self.w_1=nn.Linear(d_model,d_ff)
        self.w_2=nn.Linear(d_ff,d_model)
        self.dropout=nn.Dropout(dropout)

    def forward(self,x):
        return self.w_2(self.dropout(F.relu((self.w_1(x)))))


class LayerNorm(nn.Module):
    def __init__(self,features,eps=1e-6):
        super(LayerNorm,self).__init__()
        self.a_2=nn.Parameter(torch.ones(features))
        self.b_2=nn.Parameter(torch.zeros(features))
        self.eps=eps

    def forward(self,x):
        mean=x.mean(-1,keepdim=True)
        std=x.std(-1,keepdim=True)
        return self.a_2*(x-mean)/(std+self.eps)+self.b_2


class Generator(nn.Module):
    def __init__(self,d_model,vocab):
        super(Generator,self).__init__()
        self.proj=nn.Linear(d_model,vocab)

    def forward(self,x):
        return F.log_softmax(self.proj(x),dim=-1)


# encoderLayer clone numbers times of enc_depth.
# 把encoderLayer重复enc_depth次;
class Encoder(nn.Module):
    def __init__(self, layer, N):
        '''N encoder layers '''
        super(Encoder,self).__init__()
        self.layers = clone(layer, N)
        self.norm = LayerNorm(layer.size)

    def forward(self,x,mask=None):
        for layer in self.layers:
            x = layer(x, mask)
        return self.norm(x)


class SublayerConnection(nn.Module):
    '''LayerNorm +subLayer+dropout+residual connection'''
    def __init__(self,size,dropout):
        super(SublayerConnection,self).__init__()
        self.norm=LayerNorm(size)
        self.dropout=nn.Dropout(dropout)

    def forward(self,x,sublayer):
        return x+self.dropout(sublayer(self.norm(x)))


class EncoderLayer(nn.Module):
    def __init__(self,size,self_attn,feed_forward,dropout):
        '''size is the embedding dimension'''
        super(EncoderLayer,self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.sublayer = clone(SublayerConnection(size,dropout),2)
        self.size = size

    def forward(self,x,mask=None):
        x = self.sublayer[0](x, lambda x: self.self_attn(x,x,x,mask))
        return self.sublayer[1](x, self.feed_forward)


class Decoder(nn.Module):
    def __init__(self,layer,N):
        super(Decoder,self).__init__()
        self.layers = clone(layer,N)
        self.norm = LayerNorm(layer.size)

    def forward(self,x, memory,src_mask=None,tgt_mask=None):
        for layer in self.layers:
            x = layer(x, memory, src_mask, tgt_mask)
        return self.norm(x)


class DecoderLayer(nn.Module):
    def __init__(self,size,self_attn,src_attn,feed_forward,dropout):
        super(DecoderLayer,self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clone(SublayerConnection(size,dropout),3)

    def forward(self,x,memory,src_mask=None,tgt_mask=None):
        m = memory
        x = self.sublayer[0](x,lambda x: self.self_attn(x,x,x,tgt_mask))
        x = self.sublayer[1](x,lambda x: self.src_attn(x,m,m,src_mask))
        return self.sublayer[2](x,self.feed_forward)


class CrossAttLayer(nn.Module):
    def __init__(self,d_model,self_attn,feed_forward,dropout=0.1):
        super(CrossAttLayer, self).__init__()
        self.size = d_model
        self.self_attn = self_attn
        # self.self_attn_0 = copy.deepcopy(self_attn)
        self.feed_forward = feed_forward
        self.dropout = nn.Dropout(dropout)
        self.sublayer = clone(SublayerConnection(d_model, dropout), 2)
        # self.sublayer = clone(SublayerConnection(d_model,dropout),3)    # 可以改成三层的,第一层是self_attn

    def forward(self,q,k,v,src_mask=None):
        # k = self.sublayer[0](k, lambda k: self.self_attn_0(k,k,k))
        # q = self.sublayer[0](q, lambda q: self.self_attn_0(q,q,q))
        # x = self.sublayer[1](q, lambda q: self.self_attn(q,k,k,src_mask))
        # x = self.sublayer[2](x, self.feed_forward)
        x = self.sublayer[0](q, lambda q: self.self_attn(q,k,k,src_mask))
        x = self.sublayer[1](x, self.feed_forward)
        return x


class CrossAtt(nn.Module):
    def __init__(self, crossAttlayer, N=1):
        super(CrossAtt, self).__init__()
        self.layers = clone(crossAttlayer,N)
        self.norm = LayerNorm(crossAttlayer.size)

    def forward(self, q, k, v, src_mask=None):
        for crossAttnLayer in self.layers:
            q = crossAttnLayer(q, k, v, src_mask)
        return self.norm(q)

class Transformer(nn.Module):
    def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
        super(Transformer,self).__init__()
        c = copy.deepcopy
        attn = MultiHeadedAttention(heads,d_model)
        ff = Feedforward(d_model,d_ff,dropout)
        self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
        self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
        #self.register_buffer('src_mask', src_mask, persistent=False)
        #self.register_buffer('tgt_mask', tgt_mask, persistent=False)
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self,src_embeded,tgt_embeded,src_mask=None,tgt_mask=None):
        return self.decode(self.encode(src_embeded,src_mask),tgt_embeded,src_mask,tgt_mask)

    def encode(self,src_embeded,src_mask=None):
        return self.encoder(src_embeded,src_mask)

    def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
        return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)


class ModelOne(nn.Module):
    def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
        super(ModelOne,self).__init__()
        c = copy.deepcopy
        attn = MultiHeadedAttention(heads,d_model)
        ff = Feedforward(d_model,d_ff,dropout)
        self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
        self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
        self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
        #self.register_buffer('src_mask', src_mask, persistent=False)
        #self.register_buffer('tgt_mask', tgt_mask, persistent=False)
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
        # x = self.CrossAtt(q, img_embed, img_embed)
        # x2 = self.CrossAtt(q, des_embed, des_embed)
        des_embed_self = self.CrossAtt(des_embed, des_embed, des_embed)
        x3 = self.CrossAtt(img_embed, des_embed_self, des_embed_self)
        # src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
        src_embeded = torch.cat((x3, obj_embed), dim=1)
        x = self.encode(src_embeded,src_mask)
        x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
        return x

    def encode(self,src_embeded,src_mask=None):
        return self.encoder(src_embeded,src_mask)

    def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
        return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)

class Model005(nn.Module):
    def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
        super(Model005,self).__init__()
        c = copy.deepcopy
        attn = MultiHeadedAttention(heads,d_model)
        ff = Feedforward(d_model,d_ff,dropout)
        self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
        self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
        self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
        x = self.CrossAtt(q, img_embed, img_embed)
        src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
        x = self.encode(src_embeded,src_mask)
        x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
        return x

    def encode(self,src_embeded,src_mask=None):
        return self.encoder(src_embeded,src_mask)

    def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
        return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)

class Model006(nn.Module):
    def __init__(self,d_model=512,heads=8,enc_depth=8,dec_depth=8,d_ff=1024,dropout=0.1):
        super(Model006,self).__init__()
        c = copy.deepcopy
        attn = MultiHeadedAttention(heads,d_model)
        ff = Feedforward(d_model,d_ff,dropout)
        self.CrossAtt = CrossAtt(CrossAttLayer(d_model,c(attn),c(ff),dropout),N=1)
        self.encoder = Encoder(EncoderLayer(d_model,c(attn),c(ff),dropout),enc_depth)
        self.decoder = Decoder(DecoderLayer(d_model,c(attn),c(attn),c(ff),dropout),dec_depth)
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, q, k, v, tgt_embeded, des_embed, obj_embed, img_embed, src_mask=None, tgt_mask=None):
        x = self.CrossAtt(img_embed, img_embed, img_embed)
        x = self.CrossAtt(obj_embed, x, x)
        src_embeded = torch.cat((x, des_embed, obj_embed), dim=1)
        x = self.encode(src_embeded,src_mask)
        x = self.decode(x, tgt_embeded,src_mask, tgt_mask)
        return x

    def encode(self,src_embeded,src_mask=None):
        return self.encoder(src_embeded,src_mask)

    def decode(self,memory,tgt_embeded,src_mask=None,tgt_mask=None):
        return self.decoder(tgt_embeded,memory,src_mask,tgt_mask)