File size: 17,342 Bytes
aa7fb02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from Model.CLIP.cn_clip.clip import load_from_name
import cn_clip.clip as clip
from PIL import Image
from torch.autograd import Variable
from fur_rl.models.StageOne import Stage1
from fur_rl.models.transformer import ModelAttn
import copy
import PIL

# v3 带softmax的模型,actor
class Retriever_v3(nn.Module):
    def __init__(self, sentence_clip_model2, sentence_clip_preprocess2, device):
        super(Retriever_v3, self).__init__()
        self.sentence_clip_model2 = sentence_clip_model2
        self.sentence_clip_model_grads = sentence_clip_model2
        self.sentence_clip_preprocess2 = sentence_clip_preprocess2
        self.tokenize = clip.tokenize
        self.Stage1 = Stage1(hid_dim=512)
        self.fc02 = nn.Linear(in_features=512, out_features=1, bias=True)
        self.fc03 = nn.Linear(in_features=256, out_features=64, bias=True)
        self.fc04 = nn.Linear(in_features=64, out_features=1, bias=True)
        self.fc12 = nn.Linear(in_features=512, out_features=1, bias=True)
        self.fc13 = nn.Linear(in_features=256, out_features=64, bias=True)
        self.fc14 = nn.Linear(in_features=64, out_features=1, bias=True)
        # self.fc1 = nn.Linear(in_features=516, out_features=1, bias=True)
        self.fc2 = nn.Linear(in_features=512, out_features=512, bias=True)
        self.bn = nn.BatchNorm1d(num_features=1)
        self.Attn0 = ModelAttn()
        self.Attn1 = ModelAttn()
        self.Attn_his = ModelAttn()
        self.norm = nn.LayerNorm(normalized_shape=512)
        self.norm50 = nn.LayerNorm(normalized_shape=50)

        self.Attn_seq = ModelAttn()
        self.fc_seq0 = nn.Linear(in_features=512, out_features=1, bias=True)
        self.fc_seq1 = nn.Linear(in_features=512, out_features=1, bias=True)

        self.Attn_cross = ModelAttn()
        self.fc_q = nn.Linear(in_features=512, out_features=1, bias=True)
        self.fc_p = nn.Linear(in_features=512, out_features=1, bias=True)

        self.hx_his = None
        self.tanh = nn.Tanh()
        self.logistic = nn.Sigmoid()
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax(dim=1)

        self.device = device
    def img_embed(self, img):
        img_embed = self.sentence_clip_model2.encode_image(img)
        img_embed = img_embed / img_embed.norm(dim=-1, keepdim=True)
        return img_embed

    def txt_embed(self, txt_token):
        txt_embed = self.sentence_clip_model2.encode_text(txt_token)
        txt_embed = txt_embed / txt_embed.norm(dim=-1, keepdim=True)
        return txt_embed

    def txt_embed_grads(self, txt_token):
        txt_embed = self.sentence_clip_model_grads.encode_text(txt_token)
        txt_embed = txt_embed / txt_embed.norm(dim=-1, keepdim=True)
        return txt_embed

    def weight_train(self, img, txt_tokens, txt_matric, actions_matric, ranker, k=50):
        # to do: use img and txt to do the fusion
        p_db, topk_score, topk_action, candidates, candidates_id, candidates_pre, weight_txt = \
            self.get_candidates(txt_matric, actions_matric, k=k, ranker=ranker)
        return weight_txt, p_db


    def get_candidates_greedy(self, txt, actions_matric, k, ranker):
        x = self.Attn_seq(q=txt, k=txt, v=txt)      # [batch, 24, 512]
        x = self.tanh(self.fc_seq0(x))         # [batch, 24, 1]
        x = x.squeeze(dim=2).unsqueeze(dim=1)       # [batch, 1, 24]
        # for baseline
        x = torch.ones(x.shape, device=self.device)     # [batch, 1, 24]
        # for baseline
        weight_txt = x
        x = torch.bmm(x, actions_matric).squeeze(dim=1)  # actions_matric[batch, 24, 2000] x [batch, 2000]
        # normalize
        x = (x - x.mean(dim=-1, keepdim=True)) / x.std(dim=-1, keepdim=True)
        p = self.logistic(x)
        p = torch.clamp(p, min=1e-10, max=1 - 1e-10)        # [batch, 2000]
        topk_score, topk_action = torch.topk(p, k=k, dim=-1)      # [batch, k] [batch, k]
        candidates = torch.zeros((txt.shape[0], k, 512), device=self.device)    # [batch, k, 512]
        candidates_pre = torch.zeros((txt.shape[0], k, 3, 224, 224), device=self.device)    # [batch, k, 3, 224, 224]
        candidates_id = torch.zeros((txt.shape[0], k), device=self.device)    # [batch, k]
        for i in range(k):
            candidates[:, i, :] = ranker.data_emb[topk_action[:, i], :]    # [batch, 1, 512]
            candidates_pre[:, i, :, :, :] = ranker.data_pre[topk_action[:, i], :, :, :]    # [batch, 1, 3, 224, 224]
            candidates_id[:, i] = ranker.data_id[topk_action[:, i]]    # [batch, 1]

        return p, topk_score, topk_action, candidates, candidates_id, candidates_pre, weight_txt

    def get_candidates(self, txt, actions_matric, k, ranker):
        x = self.Attn_seq(q=txt, k=txt, v=txt)      # [batch, 24, 512]
        x = self.tanh(self.fc_seq0(x))         # [batch, 24, 1]
        x = x.squeeze(dim=2).unsqueeze(dim=1)       # [batch, 1, 24]
        # for baseline
        # x = torch.ones(x.shape, device=self.device)     # [batch, 1, 24]
        # for baseline
        weight_txt = x
        x = torch.bmm(x, actions_matric).squeeze(dim=1)  # actions_matric[batch, 24, 2000] x [batch, 2000]
        # normalize
        x = (x - x.mean(dim=-1, keepdim=True)) / x.std(dim=-1, keepdim=True)
        p = self.logistic(x)
        p = torch.clamp(p, min=1e-10, max=1 - 1e-10)        # [batch, 2000]
        topk_score, topk_action = torch.topk(p, k=k, dim=-1)      # [batch, k] [batch, k]
        candidates = torch.zeros((txt.shape[0], k, 512), device=self.device)    # [batch, k, 512]
        candidates_pre = torch.zeros((txt.shape[0], k, 3, 224, 224), device=self.device)    # [batch, k, 3, 224, 224]
        candidates_id = torch.zeros((txt.shape[0], k), device=self.device)    # [batch, k]
        for i in range(k):
            candidates[:, i, :] = ranker.data_emb[topk_action[:, i], :]    # [batch, 1, 512]
            candidates_pre[:, i, :, :, :] = ranker.data_pre[topk_action[:, i], :, :, :]    # [batch, 1, 3, 224, 224]
            candidates_id[:, i] = ranker.data_id[topk_action[:, i]]    # [batch, 1]

        return p, topk_score, topk_action, candidates, candidates_id, candidates_pre, weight_txt


    def action_greedy(self, img, txt_tokens, txt_matric, actions_matric, ranker, k=50):
        # to do: use img and txt to do the fusion
        # txt [batch, turn+2, 52]
        txt_eb = torch.zeros((txt_tokens.shape[0], txt_tokens.shape[1], 512), device=self.device)
        for i in range(txt_tokens.shape[1]):
            txt_eb[:, i, :] = self.txt_embed_grads(txt_tokens[:, i, :].long())
        # txt [batch, 12, 512]
        fusion = torch.cat((txt_eb, img), dim=1)     # [batch, 25, 512]
        p_db, topk_score, topk_action, candidates, candidates_id, candidates_pre, weight_txt = \
            self.get_candidates_greedy(txt_matric, actions_matric, k=k, ranker=ranker)
        x = self.Attn_cross(q=candidates, k=fusion, v=fusion)      # [batch, k, 512]
        # to do: use MLP replace linear
        p = self.softmax(self.fc_p(x)).squeeze(dim=2)       # [batch, k]
        p = torch.clamp(p, min=1e-10, max=1 - 1e-10)
        # to do: use MLP replace linear
        q = self.tanh(self.fc_q(x)).squeeze(dim=2)       # [batch, k]

        p_maxIndex = p.argmax(dim=-1)        # [batch]
        max_candidates = candidates[torch.arange(candidates.shape[0]), p_maxIndex]   # [batch, 512]
        max_candidates_id = candidates_id[torch.arange(candidates_id.shape[0]), p_maxIndex]   # [batch]

        return p, q, max_candidates, max_candidates_id, candidates, candidates_id, candidates_pre, p_db


    def forward(self, img, txt_tokens, txt_matric, actions_matric, ranker, k=50):
        # to do: use img and txt to do the fusion
        # txt [batch, turn+2, 52]
        txt_eb = torch.zeros((txt_tokens.shape[0], txt_tokens.shape[1], 512), device=self.device)
        for i in range(txt_tokens.shape[1]):
            txt_eb[:, i, :] = self.txt_embed_grads(txt_tokens[:, i, :].long())
        # txt [batch, 12, 512]
        fusion = torch.cat((txt_eb, img), dim=1)     # [batch, 25, 512]
        p_db, topk_score, topk_action, candidates, candidates_id, candidates_pre, weight_txt = \
            self.get_candidates(txt_matric, actions_matric, k=k, ranker=ranker)
        x = self.Attn_cross(q=candidates, k=fusion, v=fusion)      # [batch, k, 512]
        # to do: use MLP replace linear
        p = self.softmax(self.fc_p(x)).squeeze(dim=2)       # [batch, k]
        p = torch.clamp(p, min=1e-10, max=1 - 1e-10)
        # to do: use MLP replace linear
        q = self.tanh(self.fc_q(x)).squeeze(dim=2)       # [batch, k]

        p_maxIndex = p.argmax(dim=-1)        # [batch]
        max_candidates = candidates[torch.arange(candidates.shape[0]), p_maxIndex]   # [batch, 512]
        max_candidates_id = candidates_id[torch.arange(candidates_id.shape[0]), p_maxIndex]   # [batch]

        return p, q, max_candidates, max_candidates_id, candidates, candidates_id, candidates_pre, p_db





MEMORY_CAPACITY = 100
N_STATES = 4
GAMMA = 0.95


class DQN_v3():
    def __init__(self, sentence_clip_model2, sentence_clip_preprocess2, device, MULTI_GPU=False, device_ids=None):
        self.actor_net = Retriever_v3(sentence_clip_model2, sentence_clip_preprocess2, device).to(device)
        self.num_train = 0
        self.device = device
        self.MULTI_GPU = MULTI_GPU
        self.device_ids = device_ids

        self.memory = []  # initialize memory
        self.neg_memory = []
        self.memory_counter = 0
        self.actor_optimizer = torch.optim.Adam(self.actor_net.parameters(), lr=0.00001)
        self.loss_func1 = nn.MSELoss()
        self.loss_func2 = nn.MSELoss()
        self.batch_mem = {}
        self.is_store = None

    def store_transition(self, g, f, d, a, r, g_, f_, d_, t, txt, txt_, batch_size, net_mem, success_turn, turn):
        if turn == 0:
            for i in range(batch_size):
                self.batch_mem[i] = []
            self.is_store = torch.zeros((batch_size), device=self.device)
        for i in range(batch_size):
            if r[i] <= -2000:
                continue
            else:
                g_tmp = copy.deepcopy(g[i])
                f_tmp = copy.deepcopy(f[i])       # [len, 512]
                d_tmp = copy.deepcopy(d[i])
                a_tmp = copy.deepcopy(a[i])
                reward_temp = copy.deepcopy(r[i])
                g_tmp_ = copy.deepcopy(g_[i])
                f_tmp_ = copy.deepcopy(f_[i])
                d_tmp_ = copy.deepcopy(d_[i])
                t_tmp = copy.deepcopy(t[i])
                txt_tmp = copy.deepcopy(txt[i])
                txt_tmp_ = copy.deepcopy(txt_[i])
                self.batch_mem[i].append((g_tmp, f_tmp, d_tmp, a_tmp, reward_temp,
                                          g_tmp_, f_tmp_, d_tmp_, t_tmp, txt_tmp, txt_tmp_))

                if success_turn[i] > 0 and self.is_store[i] == 0:
                    # print("len", len(self.memory), len(self.batch_mem[i]))
                    self.memory.append(self.batch_mem[i])
                    self.is_store[i] = 1
                    while len(self.memory) > net_mem:
                        self.memory.pop(0)
                    self.memory_counter = len(self.memory)
                elif turn == 9 and self.is_store[i] == 0:
                    self.neg_memory.append(self.batch_mem[i])
                    while len(self.neg_memory) > net_mem:
                        self.neg_memory.pop(0)
                    # print("neg", success_turn[i], reward_temp, len(self.neg_memory))

    def learn(self, batch_size, device=None, ranker=None, k=50, batch_count=0):
        success_turn = 0
        fail_turn = 0
        if len(self.memory) == 0 and len(self.neg_memory) == 0:
            return 0,0
        if len(self.memory) > 0:
            success_turn = 1
            batch_mem = self.memory[0]
            g, f, d, a, r, g_, f_, d_, t, txt, txt_ = zip(*[batch_mem[i] for i in range(len(batch_mem))])
            b_g = torch.stack(g)
            b_f = torch.stack(f)
            b_d = torch.stack(d)
            b_a = torch.stack(a).unsqueeze(1)
            b_reward = torch.stack(r)
            b_r = torch.zeros((len(r), 1), device=self.device)
            for i in range(len(r)):
                if i == 0:
                    b_r[len(r) - i - 1] = r[len(r) - i - 1]
                else:
                    b_r[len(r) - i - 1] = r[len(r) - i - 1] + 0.5 * b_r[len(r) - i]
            b_g_ = torch.stack(g_)
            b_f_ = torch.stack(f_)
            b_d_ = torch.stack(d_)
            b_t = torch.stack(t)
            b_txt = torch.stack(txt)
            b_txt_ = torch.stack(txt_)
            self.memory.pop(0)

        if len(self.neg_memory) > 0:
            fail_turn = 1
            batch_mem = self.neg_memory[0]
            g, f, d, a, r, g_, f_, d_, t, txt, txt_ = zip(*[batch_mem[i] for i in range(len(batch_mem))])
            b_g_neg = torch.stack(g)
            b_f_neg = torch.stack(f)
            b_d_neg = torch.stack(d)
            b_a_neg = torch.stack(a).unsqueeze(1)
            b_reward_neg = torch.stack(r)
            b_r_neg = torch.zeros((len(r), 1), device=self.device)
            for i in range(len(r)):
                if i == 0:
                    b_r_neg[len(r) - i - 1] = r[len(r) - i - 1]
                else:
                    b_r_neg[len(r) - i - 1] = r[len(r) - i - 1] + 0.1 * b_r_neg[len(r) - i]
            b_g_neg_ = torch.stack(g_)
            b_f_neg_ = torch.stack(f_)
            b_d_neg_ = torch.stack(d_)
            b_t_neg = torch.stack(t)
            b_txt_neg = torch.stack(txt)
            b_txt_neg_ = torch.stack(txt_)
            self.neg_memory.pop(0)
        if success_turn > 0 and fail_turn > 0:
            b_g = torch.cat((b_g, b_g_neg), 0)
            b_f = torch.cat((b_f, b_f_neg), 0)
            b_d = torch.cat((b_d, b_d_neg), 0)
            b_a = torch.cat((b_a, b_a_neg), 0)
            b_r = torch.cat((b_r, b_r_neg), 0)
            b_g_ = torch.cat((b_g_, b_g_neg_), 0)
            b_f_ = torch.cat((b_f_, b_f_neg_), 0)
            b_d_ = torch.cat((b_d_, b_d_neg_), 0)
            b_t = torch.cat((b_t, b_t_neg), 0)
            b_reward = torch.cat((b_reward, b_reward_neg), 0)
            b_txt = torch.cat((b_txt, b_txt_neg), 0)
        elif success_turn == 0 and fail_turn > 0:
            b_g = b_g_neg
            b_f = b_f_neg
            b_d = b_d_neg
            b_a = b_a_neg
            b_r = b_r_neg
            b_g_ = b_g_neg_
            b_f_ = b_f_neg_
            b_d_ = b_d_neg_
            b_t = b_t_neg
            b_reward = b_reward_neg
            b_txt = b_txt_neg
        elif success_turn > 0 and fail_turn == 0:
            b_g = b_g
            b_f = b_f
            b_d = b_d
            b_a = b_a
            b_r = b_r
            b_g_ = b_g_
            b_f_ = b_f_
            b_d_ = b_d_
            b_t = b_t
            b_reward = b_reward
            b_txt = b_txt
        ## actor loss
        # img, txt, actions_matric, ranker, k = 50
        p, q, max_candidates, max_candidates_id, candidates, candidates_id, candidates_pre, p_db = \
            self.actor_net(b_g, b_txt, b_f, b_d, ranker, k)
        log_probs = torch.zeros(p.shape[0], 1, device=self.device)
        q_eval = torch.zeros(q.shape[0], 1, device=self.device)
        for i in range(p.shape[0]):
            log_probs[i][0] = p[i][b_a[i][0]].to(device)
            q_eval[i][0] = q[i][b_a[i][0]].to(device)
        # q_eval_temp = torch.zeros((b_a.shape[0], 1)).to(device)
        # for i in range(b_a.shape[0]):
        #     log_probs_temp[i][0] = log_probs[i][b_a[i][0]].to(device)
        #     q_eval_temp[i][0] = log_probs[i][b_a[i][0]].to(device)
        # q_next = self.actor_net(b_g_, b_f_, b_c_, b_hx_, b_r)[1].detach()
        # q_target = b_r + 0.8 * q_next.max(1)[0].view(b_a.shape[0], 1)
        # delta = q_target - q_eval_temp
        # delta = b_r - q_eval_temp
        # print('q_target', q_target[0], 'q_eval', q_eval_temp[0], 'delta', delta[0])
        # print("log_probs_temp", max_score, "b_r", b_r, "log(p)", torch.log(log_probs_temp))
        # actor_loss = - (torch.log(log_probs).t() @ b_r.detach()).float()
        actor_loss = 0
        # critic_loss = torch.mean(delta ** 2).float()
        # critic_loss = torch.mean((b_r/5 - q_eval) ** 2).float()
        critic_loss = 0

        ## supervised_loss
        if success_turn == 1:
            weight, p_db_w = self.actor_net.weight_train(b_g, b_txt, b_f, b_d, ranker, k)
            supervised_loss = torch.zeros(1, device=self.device)
            for i in range(b_reward.shape[0]):
                print(b_reward[i][0], p_db_w[i][b_t[i][0]])
                s_loss_tmp = - b_reward[i][0] * p_db_w[i][b_t[i][0]]
                supervised_loss += s_loss_tmp
            supervised_loss = supervised_loss.float()
        else:
            supervised_loss = 0
        ## total loss
        loss = 0.1 * actor_loss + 10 * critic_loss + 10 * supervised_loss
        if loss != 0:
            self.actor_optimizer.zero_grad()
            print("actor_loss", actor_loss, "critic_loss", critic_loss, "supervised_loss", supervised_loss)
            loss.backward()
            self.actor_optimizer.step()

        return actor_loss, critic_loss