File size: 5,790 Bytes
7c1eee1
f8f1d3f
7c1eee1
f8f1d3f
7c1eee1
 
f8f1d3f
7c1eee1
3e3ca46
6dc2db5
6c1c5e7
f88246b
6dc2db5
7c1eee1
 
 
 
 
 
f8f1d3f
7c1eee1
 
 
 
f8f1d3f
 
7c1eee1
3e3ca46
 
 
 
7c1eee1
 
 
 
 
 
 
3e3ca46
f8f1d3f
3e3ca46
 
 
 
 
f88246b
 
008ad46
 
f88246b
 
008ad46
 
 
 
f8f1d3f
7c1eee1
 
 
f8f1d3f
7c1eee1
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f1d3f
7c1eee1
 
9ff2a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1eee1
9ff2a5b
f8f1d3f
9ff2a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8f1d3f
9ff2a5b
 
 
 
 
 
 
 
 
f8f1d3f
 
 
 
 
 
 
 
 
 
 
7c1eee1
 
 
f8f1d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import json
import time
import kiui
from typing import List
import replicate
import subprocess

import requests
from gradio_client import Client
# from .client import Gau2Mesh_client
from constants import REPLICATE_API_TOKEN, LOG_SERVER, GIF_SERVER
# os.environ("REPLICATE_API_TOKEN", "yourKey")

class BaseModelWorker:
    def __init__(self,
                 model_name: str,
                 i2s_model: bool, 
                 online_model: bool,
                 model_api: str = None
                 ):
        self.model_name = model_name
        self.i2s_model = i2s_model
        self.online_model = online_model
        self.model_api = model_api
        self.urls_json = None
        
        # urls_json_path = os.path.join(OFFLINE_GIF_DIR, f"{model_name}.json")
        # if os.path.exists(urls_json_path):
        #     with open(urls_json_path, 'r') as f:
        #         self.urls_json = json.load(f)

    def check_online(self) -> bool:
        if self.online_model and not self.model:
            return True
        else:
            return False
    
    def load_offline(self, offline_idx):
        ## offline 
        # if offline and str(offline_idx) in self.urls_json.keys():
        # #     return self.urls_json[str(offline_idx)]
        # else:
        #     return None
        galley = "image2shape" if self.i2s_model else "text2shape"
        rgb_name = f"{galley}_{self.model_name}_{offline_idx}_rgb.gif"
        normal_name = f"{galley}_{self.model_name}_{offline_idx}_normal.gif"
        geo_name = f"{galley}_{self.model_name}_{offline_idx}_geo.gif"

        rgb_url = f"{GIF_SERVER}/{rgb_name}"
        normal_url = f"{GIF_SERVER}/{normal_name}"
        geo_url = f"{GIF_SERVER}/{geo_name}"
        return {'rgb': rgb_url, 
                'normal': normal_url,
                'geo': geo_url}

    def inference(self, prompt):
        pass

    def render(self, shape, rgb_on=True, normal_on=True):
        pass

class HuggingfaceApiWorker(BaseModelWorker):
    def __init__(
            self,
            model_name: str,
            i2s_model: bool, 
            online_model: bool,
            model_api: str,
    ):
        super().__init__(
            model_name,
            i2s_model, 
            online_model,
            model_api,
        )

# class PointE_Worker(BaseModelWorker):
#     def __init__(self, 
#                  model_name: str, 
#                  i2s_model: bool, 
#                  online_model: bool, 
#                  model_api: str):
#         super().__init__(model_name, i2s_model, online_model, model_api)

# class TriplaneGaussian(BaseModelWorker):
#     def __init__(self, model_name: str, i2s_model: bool, online_model: bool, model_api: str = None):
#         super().__init__(model_name, i2s_model, online_model, model_api)


# class LGM_Worker(BaseModelWorker):
#     def __init__(self, 
#                  model_name: str, 
#                  i2s_model: bool, 
#                  online_model: bool, 
#                  model_api: str = "camenduru/lgm:d2870893aa115773465a823fe70fd446673604189843f39a99642dd9171e05e2",
#     ):
#         super().__init__(model_name, i2s_model, online_model, model_api)
#         self.model_client = replicate.Client(api_token=REPLICATE_API_TOKEN)
    
#     def inference(self, image):
        
#         output = self.model_client.run(
#             self.model_api,
#             input={"input_image": image}
#         )
#         #=> .mp4 .ply
#         return output[1]

#     def render(self, shape):
#         mesh = Gau2Mesh_client.run(shape)

#         path_normal = ""
#         cmd_normal = f"python -m ..kiuikit.kiui.render {mesh} --save {path_normal} \
#             --wogui --H 512 --W 512 --radius 3 --elevation 0 --num_azimuth 40 --front_dir='+z' --mode normal"
#         subprocess.run(cmd_normal, shell=True, check=True)

#         path_rgb = ""
#         cmd_rgb = f"python -m ..kiuikit.kiui.render {mesh} --save {path_rgb} \
#             --wogui --H 512 --W 512 --radius 3 --elevation 0 --num_azimuth 40 --front_dir='+z' --mode rgb"
#         subprocess.run(cmd_rgb, shell=True, check=True)
        
#         return path_normal, path_rgb

# class V3D_Worker(BaseModelWorker):
#     def __init__(self, 
#                 model_name: str, 
#                 i2s_model: bool, 
#                 online_model: bool, 
#                 model_api: str = None):
#         super().__init__(model_name, i2s_model, online_model, model_api)


# model = 'LGM'
# # model = 'TriplaneGaussian'
# folder = 'glbs_full'
# form = 'glb'
# pose = '+z'

# pair = ('OpenLRM', 'meshes', 'obj', '-y')
# pair = ('TriplaneGaussian', 'glbs_full', 'glb', '-y')
# pair = ('LGM', 'glbs_full', 'glb', '+z')


if __name__=="__main__":
    # input = {
    # "input_image": "https://replicate.delivery/pbxt/KN0hQI9pYB3NOpHLqktkkQIblwpXt0IG7qI90n5hEnmV9kvo/bird_rgba.png",
    # }
    # print("Start...")
    # model_client = replicate.Client(api_token=REPLICATE_API_TOKEN)
    # output = model_client.run(
    # "camenduru/lgm:d2870893aa115773465a823fe70fd446673604189843f39a99642dd9171e05e2",
    # input=input
    # )
    # print("output: ", output)
    #=>  ['https://replicate.delivery/pbxt/toffawxRE3h6AUofI9sPtiAsoYI0v73zuGDZjZWBWAPzHKSlA/gradio_output.mp4', 'https://replicate.delivery/pbxt/oSn1XPfoJuw2UKOUIAue2iXeT7aXncVjC4QwHKU5W5x0HKSlA/gradio_output.ply']

    output = ['https://replicate.delivery/pbxt/RPSTEes37lzAJav3jy1lPuzizm76WGU4IqDcFcAMxhQocjUJA/gradio_output.mp4', 'https://replicate.delivery/pbxt/2Vy8yrPO3PYiI1YJBxPXAzryR0SC0oyqW3XKPnXiuWHUuRqE/gradio_output.ply']
    to_mesh_client = Client("https://dylanebert-splat-to-mesh.hf.space/", upload_files=True, download_files=True)
    mesh = to_mesh_client.predict(output[1], api_name="/run")
    print(mesh)