File size: 8,940 Bytes
8fa1f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
import torch
from seagull.model import *
from seagull.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN


def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs['device_map'] = {"": device}

    if load_8bit:
        kwargs['load_in_8bit'] = True
    elif load_4bit:
        kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
    else:
        kwargs['torch_dtype'] = torch.float16

    if use_flash_attn:
        kwargs['attn_implementation'] = 'flash_attention_2'

    if 'seagull' in model_name.lower() or True:
        # Load LLaVA model
        if 'lora' in model_name.lower() and model_base is None:
            warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
        if 'lora' in model_name.lower() and model_base is not None or True:
            from seagull.model.language_model.seagull_llama import SeagullConfig
            lora_cfg_pretrained = SeagullConfig.from_pretrained(model_path)
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            print('Loading LLaVA from base model...')
            model = SeagullLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
            token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
            if model.lm_head.weight.shape[0] != token_num:
                model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
                model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))

            print('Loading additional LLaVA weights...')
            if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
                non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
            else:
                # this is probably from HF Hub
                from huggingface_hub import hf_hub_download
                def load_from_hf(repo_id, filename, subfolder=None):
                    cache_file = hf_hub_download(
                        repo_id=repo_id,
                        filename=filename,
                        subfolder=subfolder)
                    return torch.load(cache_file, map_location='cpu')
                non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
            
            for k, v in non_lora_trainables.items():
                print(k)
            print('print non lora')
            non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
            if any(k.startswith('model.model.') for k in non_lora_trainables):
                non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
            model.load_state_dict(non_lora_trainables, strict=False)

            from peft import PeftModel
            print('Loading LoRA weights...')
            model = PeftModel.from_pretrained(model, model_path)
            print('Merging LoRA weights...')
            model = model.merge_and_unload()
            print('Model is loaded...')
        elif model_base is not None:
            # this may be mm projector only
            print('Loading LLaVA from base model...')
            if 'mpt' in model_name.lower():
                if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
                    shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
                cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
                model = SeagullMptForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
                cfg_pretrained = AutoConfig.from_pretrained(model_path)
                model = SeagullLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)

            mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
            mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
            model.load_state_dict(mm_projector_weights, strict=False)
        else:
            if 'mpt' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = SeagullMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
            elif 'mistral' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                model = SeagullMistralForCausalLM.from_pretrained(
                    model_path,
                    low_cpu_mem_usage=True,
                    **kwargs
                )
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = SeagullLlamaForCausalLM.from_pretrained(
                    model_path,
                    low_cpu_mem_usage=True,
                    **kwargs
                )
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print('Convert to FP16...')
            model.to(torch.float16)
        else:
            use_fast = False
            if 'mpt' in model_name.lower():
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
            else:
                tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
                model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)

    image_processor = None

    if 'seagull' in model_name.lower() or True:
        mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        model.resize_token_embeddings(len(tokenizer))

        vision_tower = model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model(device_map=device_map)
        if device_map != 'auto':
            vision_tower.to(device=device_map, dtype=torch.float16)
        image_processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len