File size: 11,941 Bytes
2abdb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import time
import ftplib
import threading
from tqdm.notebook import tqdm
import zipfile
import gradio as gr
import torch
# from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import AutoTokenizer, AutoModel


def get_model_ftp(model_path, model_name):
    ftp = ftplib.FTP('10.209.16.22')
    ftp.login('soltest', 'soltest')
    folder_path = '/ftp/3D/ai-model/ChatYuan/ClueAI/'
    ftp.cwd(folder_path)

    file_list = ftp.nlst(folder_path)
    if os.path.join(folder_path, model_name) in file_list:
        # 获取远程文件的大小
        file_size = ftp.size(model_name)

        # 创建本地文件,并用二进制写模式打开
        with open(os.path.join(model_path, model_name), 'wb') as f:
            # 下载文件并显示进度条
            with tqdm.wrapattr(f, 'write', desc="Download " + model_name, total=file_size, unit='B', unit_scale=True) as pbar:
                ftp.retrbinary('RETR ' + model_name, pbar.write)

        ftp.quit()
        unzip(model_path, model_name)



def unzip(path, file_name):
    try:
        stop_unzip = threading.Event()
        thread = threading.Thread(target=print_flush, args=(stop_unzip, "start decompression "))
        thread.start()
        zip_file = zipfile.ZipFile(os.path.join(path, file_name))
        for names in zip_file.namelist():
            zip_file.extract(names, path)
        zip_file.close()

        stop_unzip.set()
        thread.join()

    except Exception as ex:
        stop_unzip.set()
        thread.join()
        os.remove(os.path.join(path, file_name))
        raise Exception(f"\nunzip失败:" + str(ex))


def prepare_model(model_dir):
    model_path = model_dir.split('/')[0]
    model_name = model_dir.split('/')[1]
    if not os.path.exists(model_dir):
        os.makedirs("ClueAI", exist_ok=True)
        get_model_ftp(model_path, model_name + '.zip')
        os.remove(os.path.join(model_path, model_name + '.zip'))
    
            
def print_flush(stop_event, str):
    loading_strings = [str + ".", str + "..", str + "...", str + ".", str + "..", str + "..."]
    index = 0

    while not stop_event.is_set():
        loading_str = loading_strings[index]
        print(loading_str, end="\r")
        index = (index + 1) % len(loading_strings)
        time.sleep(0.5)

        # Refresh the loading string every three cycles
        if index == 0:
            print(" " * len(loading_str), end="\r")
            time.sleep(0.2)
    print(loading_strings[index], end="\r")
    print("\n" + str.split(" ")[1] + " finish.")


model_dir = 'ClueAI/ChatYuan-large-v2'
prepare_model(model_dir)

tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# model.half()


def preprocess(text):
    base_info = ""
    text = f"{base_info}{text}"
    text = text.replace("\n", "\\n").replace("\t", "\\t")
    return text


def postprocess(text):
    return text.replace("\\n", "\n").replace("\\t", "\t").replace(
        '%20', '  ')  # .replace(" ", " ")


generate_config = {
    'do_sample': True,
    'top_p': 0.9,
    'top_k': 50,
    'temperature': 0.7,
    'num_beams': 1,
    'max_length': 1024,
    'min_length': 3,
    'no_repeat_ngram_size': 5,
    'length_penalty': 0.6,
    'return_dict_in_generate': True,
    'output_scores': True
}


def answer(
        text,
        top_p,
        temperature,
        sample=True,
):
    '''
    sample:是否抽样。生成任务,可以设置为True;
    top_p:0-1之间,生成的内容越多样
    '''
    text = preprocess(text)
    encoding = tokenizer(text=[text],
                         truncation=True,
                         padding=True,
                         max_length=1024,
                         return_tensors="pt").to(device)
    if not sample:
        out = model.generate(**encoding,
                             return_dict_in_generate=True,
                             output_scores=False,
                             max_new_tokens=1024,
                             num_beams=1,
                             length_penalty=0.6)
    else:
        out = model.generate(**encoding,
                             return_dict_in_generate=True,
                             output_scores=False,
                             max_new_tokens=1024,
                             do_sample=True,
                             top_p=top_p,
                             temperature=temperature,
                             no_repeat_ngram_size=12)
    # out=model.generate(**encoding, **generate_config)
    out_text = tokenizer.batch_decode(out["sequences"],
                                      skip_special_tokens=True)
    return postprocess(out_text[0])


def clear_session():
    return '', None


def chatyuan_bot(input, history, top_p, temperature, num):
    history = history or []
    if len(history) > num:
        history = history[-num:]

    context = "\n".join([
        f"用户:{input_text}\n小元:{answer_text}"
        for input_text, answer_text in history
    ])

    input_text = context + "\n用户:" + input + "\n小元:"
    input_text = input_text.strip()
    output_text = answer(input_text, top_p, temperature)
    print("open_model".center(20, "="))
    print(f"{input_text}\n{output_text}")
    history.append((input, output_text))
    return '', history, history


def chatyuan_bot_regenerate(input, history, top_p, temperature, num):
    history = history or []

    if history:
        input = history[-1][0]
        history = history[:-1]

    if len(history) > num:
        history = history[-num:]

    context = "\n".join([
        f"用户:{input_text}\n小元:{answer_text}"
        for input_text, answer_text in history
    ])

    input_text = context + "\n用户:" + input + "\n小元:"
    input_text = input_text.strip()
    output_text = answer(input_text, top_p, temperature)
    print("open_model".center(20, "="))
    print(f"{input_text}\n{output_text}")
    history.append((input, output_text))
    return '', history, history


block = gr.Blocks()

with block as demo:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
        <font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model</font>
        <font size=4>注意:gradio对markdown代码格式展示有限</font>
    """)
    with gr.Row():
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(label='ChatYuan').style(height=400)

        with gr.Column(scale=1):
            num = gr.Slider(minimum=4,
                            maximum=10,
                            label="最大的对话轮数",
                            value=5,
                            step=1)
            top_p = gr.Slider(minimum=0,
                              maximum=1,
                              label="top_p",
                              value=1,
                              step=0.1)
            temperature = gr.Slider(minimum=0,
                                    maximum=1,
                                    label="temperature",
                                    value=0.7,
                                    step=0.1)
            clear_history = gr.Button("👋 清除历史对话 | Clear History")
            send = gr.Button("🚀 发送 | Send")
            regenerate = gr.Button("🚀 重新生成本次结果 | regenerate")
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot,
                   inputs=[message, state, top_p, temperature, num],
                   outputs=[message, chatbot, state])
    regenerate.click(chatyuan_bot_regenerate,
                     inputs=[message, state, top_p, temperature, num],
                     outputs=[message, chatbot, state])
    send.click(chatyuan_bot,
               inputs=[message, state, top_p, temperature, num],
               outputs=[message, chatbot, state])

    clear_history.click(fn=clear_session,
                        inputs=[],
                        outputs=[chatbot, state],
                        queue=False)


block = gr.Blocks()
with block as introduction:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>

<font size=4>😉ChatYuan: 元语功能型对话大模型 | General Model for Dialogue with ChatYuan
<br>
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
<br>
ChatYuan large v2 is an open-source large language model for dialogue, supports both Chinese and English languages, and in ChatGPT style.
<br>
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。
<br>
在Chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化:
- 新增了中英双语对话能力。
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。
- 新增了表格生成功能。使生成的表格内容和格式更适配。
- 增强了基础数学运算能力。
- 最大长度token数扩展到4096。
- 增强了模拟情景能力。.<br>
<br>
Based on the original functions of Chatyuan-large-v1, we optimized the model as follows:
-Added the ability to speak in both Chinese and English.
-Added the ability to refuse to answer. Learn to refuse to answer some dangerous and harmful questions.
-Added code generation functionality. Basic code generation has been optimized to a certain extent.
-Enhanced basic capabilities. The original contextual Q&A and creative writing skills have significantly improved.
-Added a table generation function. Make the generated table content and format more appropriate.
-Enhanced basic mathematical computing capabilities.
-The maximum number of length tokens has been expanded to 4096.
-Enhanced ability to simulate scenarios< br>
<br>
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成.  <br> 
<br>
 &nbsp; <a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> &nbsp; | &nbsp; <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> &nbsp; | &nbsp; <a href='https://www.clueai.cn' target="_blank">官网体验场</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> &nbsp; | &nbsp; <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> &nbsp;
</font>
<center><a href="https://clustrmaps.com/site/1bts0"  title="Visit tracker"><img src="//www.clustrmaps.com/map_v2.png?d=ycVCe17noTYFDs30w7AmkFaE-TwabMBukDP1802_Lts&cl=ffffff" /></a></center>
    """)

gui = gr.TabbedInterface(
    interface_list=[introduction, demo],
    tab_names=["相关介绍 | Introduction", "开源模型 | Online Demo"])
# gui.launch(quiet=True, show_api=False, share=True)