File size: 11,941 Bytes
2abdb37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import time
import ftplib
import threading
from tqdm.notebook import tqdm
import zipfile
import gradio as gr
import torch
# from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import AutoTokenizer, AutoModel
def get_model_ftp(model_path, model_name):
ftp = ftplib.FTP('10.209.16.22')
ftp.login('soltest', 'soltest')
folder_path = '/ftp/3D/ai-model/ChatYuan/ClueAI/'
ftp.cwd(folder_path)
file_list = ftp.nlst(folder_path)
if os.path.join(folder_path, model_name) in file_list:
# 获取远程文件的大小
file_size = ftp.size(model_name)
# 创建本地文件,并用二进制写模式打开
with open(os.path.join(model_path, model_name), 'wb') as f:
# 下载文件并显示进度条
with tqdm.wrapattr(f, 'write', desc="Download " + model_name, total=file_size, unit='B', unit_scale=True) as pbar:
ftp.retrbinary('RETR ' + model_name, pbar.write)
ftp.quit()
unzip(model_path, model_name)
def unzip(path, file_name):
try:
stop_unzip = threading.Event()
thread = threading.Thread(target=print_flush, args=(stop_unzip, "start decompression "))
thread.start()
zip_file = zipfile.ZipFile(os.path.join(path, file_name))
for names in zip_file.namelist():
zip_file.extract(names, path)
zip_file.close()
stop_unzip.set()
thread.join()
except Exception as ex:
stop_unzip.set()
thread.join()
os.remove(os.path.join(path, file_name))
raise Exception(f"\nunzip失败:" + str(ex))
def prepare_model(model_dir):
model_path = model_dir.split('/')[0]
model_name = model_dir.split('/')[1]
if not os.path.exists(model_dir):
os.makedirs("ClueAI", exist_ok=True)
get_model_ftp(model_path, model_name + '.zip')
os.remove(os.path.join(model_path, model_name + '.zip'))
def print_flush(stop_event, str):
loading_strings = [str + ".", str + "..", str + "...", str + ".", str + "..", str + "..."]
index = 0
while not stop_event.is_set():
loading_str = loading_strings[index]
print(loading_str, end="\r")
index = (index + 1) % len(loading_strings)
time.sleep(0.5)
# Refresh the loading string every three cycles
if index == 0:
print(" " * len(loading_str), end="\r")
time.sleep(0.2)
print(loading_strings[index], end="\r")
print("\n" + str.split(" ")[1] + " finish.")
model_dir = 'ClueAI/ChatYuan-large-v2'
prepare_model(model_dir)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
# model.half()
def preprocess(text):
base_info = ""
text = f"{base_info}{text}"
text = text.replace("\n", "\\n").replace("\t", "\\t")
return text
def postprocess(text):
return text.replace("\\n", "\n").replace("\\t", "\t").replace(
'%20', ' ') # .replace(" ", " ")
generate_config = {
'do_sample': True,
'top_p': 0.9,
'top_k': 50,
'temperature': 0.7,
'num_beams': 1,
'max_length': 1024,
'min_length': 3,
'no_repeat_ngram_size': 5,
'length_penalty': 0.6,
'return_dict_in_generate': True,
'output_scores': True
}
def answer(
text,
top_p,
temperature,
sample=True,
):
'''
sample:是否抽样。生成任务,可以设置为True;
top_p:0-1之间,生成的内容越多样
'''
text = preprocess(text)
encoding = tokenizer(text=[text],
truncation=True,
padding=True,
max_length=1024,
return_tensors="pt").to(device)
if not sample:
out = model.generate(**encoding,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=1024,
num_beams=1,
length_penalty=0.6)
else:
out = model.generate(**encoding,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=1024,
do_sample=True,
top_p=top_p,
temperature=temperature,
no_repeat_ngram_size=12)
# out=model.generate(**encoding, **generate_config)
out_text = tokenizer.batch_decode(out["sequences"],
skip_special_tokens=True)
return postprocess(out_text[0])
def clear_session():
return '', None
def chatyuan_bot(input, history, top_p, temperature, num):
history = history or []
if len(history) > num:
history = history[-num:]
context = "\n".join([
f"用户:{input_text}\n小元:{answer_text}"
for input_text, answer_text in history
])
input_text = context + "\n用户:" + input + "\n小元:"
input_text = input_text.strip()
output_text = answer(input_text, top_p, temperature)
print("open_model".center(20, "="))
print(f"{input_text}\n{output_text}")
history.append((input, output_text))
return '', history, history
def chatyuan_bot_regenerate(input, history, top_p, temperature, num):
history = history or []
if history:
input = history[-1][0]
history = history[:-1]
if len(history) > num:
history = history[-num:]
context = "\n".join([
f"用户:{input_text}\n小元:{answer_text}"
for input_text, answer_text in history
])
input_text = context + "\n用户:" + input + "\n小元:"
input_text = input_text.strip()
output_text = answer(input_text, top_p, temperature)
print("open_model".center(20, "="))
print(f"{input_text}\n{output_text}")
history.append((input, output_text))
return '', history, history
block = gr.Blocks()
with block as demo:
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
<font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model</font>
<font size=4>注意:gradio对markdown代码格式展示有限</font>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label='ChatYuan').style(height=400)
with gr.Column(scale=1):
num = gr.Slider(minimum=4,
maximum=10,
label="最大的对话轮数",
value=5,
step=1)
top_p = gr.Slider(minimum=0,
maximum=1,
label="top_p",
value=1,
step=0.1)
temperature = gr.Slider(minimum=0,
maximum=1,
label="temperature",
value=0.7,
step=0.1)
clear_history = gr.Button("👋 清除历史对话 | Clear History")
send = gr.Button("🚀 发送 | Send")
regenerate = gr.Button("🚀 重新生成本次结果 | regenerate")
message = gr.Textbox()
state = gr.State()
message.submit(chatyuan_bot,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
regenerate.click(chatyuan_bot_regenerate,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
send.click(chatyuan_bot,
inputs=[message, state, top_p, temperature, num],
outputs=[message, chatbot, state])
clear_history.click(fn=clear_session,
inputs=[],
outputs=[chatbot, state],
queue=False)
block = gr.Blocks()
with block as introduction:
gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
<font size=4>😉ChatYuan: 元语功能型对话大模型 | General Model for Dialogue with ChatYuan
<br>
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
<br>
ChatYuan large v2 is an open-source large language model for dialogue, supports both Chinese and English languages, and in ChatGPT style.
<br>
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。
<br>
在Chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化:
- 新增了中英双语对话能力。
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。
- 新增了表格生成功能。使生成的表格内容和格式更适配。
- 增强了基础数学运算能力。
- 最大长度token数扩展到4096。
- 增强了模拟情景能力。.<br>
<br>
Based on the original functions of Chatyuan-large-v1, we optimized the model as follows:
-Added the ability to speak in both Chinese and English.
-Added the ability to refuse to answer. Learn to refuse to answer some dangerous and harmful questions.
-Added code generation functionality. Basic code generation has been optimized to a certain extent.
-Enhanced basic capabilities. The original contextual Q&A and creative writing skills have significantly improved.
-Added a table generation function. Make the generated table content and format more appropriate.
-Enhanced basic mathematical computing capabilities.
-The maximum number of length tokens has been expanded to 4096.
-Enhanced ability to simulate scenarios< br>
<br>
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成. <br>
<br>
<a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> | <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> | <a href='https://www.clueai.cn' target="_blank">官网体验场</a> | <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> | <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> | <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a>
</font>
<center><a href="https://clustrmaps.com/site/1bts0" title="Visit tracker"><img src="//www.clustrmaps.com/map_v2.png?d=ycVCe17noTYFDs30w7AmkFaE-TwabMBukDP1802_Lts&cl=ffffff" /></a></center>
""")
gui = gr.TabbedInterface(
interface_list=[introduction, demo],
tab_names=["相关介绍 | Introduction", "开源模型 | Online Demo"])
# gui.launch(quiet=True, show_api=False, share=True)
|