File size: 10,211 Bytes
f1e9197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
from functools import partial
import logging
import os
import typing as tp

import torch
import torchmetrics

from ..data.audio_utils import convert_audio


logger = logging.getLogger(__name__)


class _patch_passt_stft:
    """Decorator to patch torch.stft in PaSST."""
    def __init__(self):
        self.old_stft = torch.stft

    def __enter__(self):
        # return_complex is a mandatory parameter in latest torch versions
        # torch is throwing RuntimeErrors when not set
        torch.stft = partial(torch.stft, return_complex=False)

    def __exit__(self, *exc):
        torch.stft = self.old_stft


def kl_divergence(pred_probs: torch.Tensor, target_probs: torch.Tensor, epsilon: float = 1e-6) -> torch.Tensor:
    """Computes the elementwise KL-Divergence loss between probability distributions
    from generated samples and target samples.

    Args:
        pred_probs (torch.Tensor): Probabilities for each label obtained
            from a classifier on generated audio. Expected shape is [B, num_classes].
        target_probs (torch.Tensor): Probabilities for each label obtained
            from a classifier on target audio. Expected shape is [B, num_classes].
        epsilon (float): Epsilon value.
    Returns:
        kld (torch.Tensor): KLD loss between each generated sample and target pair.
    """
    kl_div = torch.nn.functional.kl_div((pred_probs + epsilon).log(), target_probs, reduction="none")
    return kl_div.sum(-1)


class KLDivergenceMetric(torchmetrics.Metric):
    """Base implementation for KL Divergence metric.

    The KL divergence is measured between probability distributions
    of class predictions returned by a pre-trained audio classification model.
    When the KL-divergence is low, the generated audio is expected to
    have similar acoustic characteristics as the reference audio,
    according to the classifier.
    """
    def __init__(self):
        super().__init__()
        self.add_state("kld_pq_sum", default=torch.tensor(0.), dist_reduce_fx="sum")
        self.add_state("kld_qp_sum", default=torch.tensor(0.), dist_reduce_fx="sum")
        self.add_state("kld_all_sum", default=torch.tensor(0.), dist_reduce_fx="sum")
        self.add_state("weight", default=torch.tensor(0), dist_reduce_fx="sum")

    def _get_label_distribution(self, x: torch.Tensor, sizes: torch.Tensor,
                                sample_rates: torch.Tensor) -> tp.Optional[torch.Tensor]:
        """Get model output given provided input tensor.

        Args:
            x (torch.Tensor): Input audio tensor of shape [B, C, T].
            sizes (torch.Tensor): Actual audio sample length, of shape [B].
            sample_rates (torch.Tensor): Actual audio sample rate, of shape [B].
        Returns:
            probs (torch.Tensor): Probabilities over labels, of shape [B, num_classes].
        """
        raise NotImplementedError("implement method to extract label distributions from the model.")

    def update(self, preds: torch.Tensor, targets: torch.Tensor,
               sizes: torch.Tensor, sample_rates: torch.Tensor) -> None:
        """Calculates running KL-Divergence loss between batches of audio
        preds (generated) and target (ground-truth)
        Args:
            preds (torch.Tensor): Audio samples to evaluate, of shape [B, C, T].
            targets (torch.Tensor): Target samples to compare against, of shape [B, C, T].
            sizes (torch.Tensor): Actual audio sample length, of shape [B].
            sample_rates (torch.Tensor): Actual audio sample rate, of shape [B].
        """
        assert preds.shape == targets.shape
        assert preds.size(0) > 0, "Cannot update the loss with empty tensors"
        preds_probs = self._get_label_distribution(preds, sizes, sample_rates)
        targets_probs = self._get_label_distribution(targets, sizes, sample_rates)
        if preds_probs is not None and targets_probs is not None:
            assert preds_probs.shape == targets_probs.shape
            kld_scores = kl_divergence(preds_probs, targets_probs)
            assert not torch.isnan(kld_scores).any(), "kld_scores contains NaN value(s)!"
            self.kld_pq_sum += torch.sum(kld_scores)
            kld_qp_scores = kl_divergence(targets_probs, preds_probs)
            self.kld_qp_sum += torch.sum(kld_qp_scores)
            self.weight += torch.tensor(kld_scores.size(0))

    def compute(self) -> dict:
        """Computes KL-Divergence across all evaluated pred/target pairs."""
        weight: float = float(self.weight.item())  # type: ignore
        assert weight > 0, "Unable to compute with total number of comparisons <= 0"
        logger.info(f"Computing KL divergence on a total of {weight} samples")
        kld_pq = self.kld_pq_sum.item() / weight  # type: ignore
        kld_qp = self.kld_qp_sum.item() / weight  # type: ignore
        kld_both = kld_pq + kld_qp
        return {'kld': kld_pq, 'kld_pq': kld_pq, 'kld_qp': kld_qp, 'kld_both': kld_both}


class PasstKLDivergenceMetric(KLDivergenceMetric):
    """KL-Divergence metric based on pre-trained PASST classifier on AudioSet.

    From: PaSST: Efficient Training of Audio Transformers with Patchout
    Paper: https://arxiv.org/abs/2110.05069
    Implementation: https://github.com/kkoutini/PaSST

    Follow instructions from the github repo:
    ```
    pip install 'git+https://github.com/kkoutini/passt_hear21@0.0.19#egg=hear21passt'
    ```

    Args:
        pretrained_length (float, optional): Audio duration used for the pretrained model.
    """
    def __init__(self, pretrained_length: tp.Optional[float] = None):
        super().__init__()
        self._initialize_model(pretrained_length)

    def _initialize_model(self, pretrained_length: tp.Optional[float] = None):
        """Initialize underlying PaSST audio classifier."""
        model, sr, max_frames, min_frames = self._load_base_model(pretrained_length)
        self.min_input_frames = min_frames
        self.max_input_frames = max_frames
        self.model_sample_rate = sr
        self.model = model
        self.model.eval()
        self.model.to(self.device)

    def _load_base_model(self, pretrained_length: tp.Optional[float]):
        """Load pretrained model from PaSST."""
        try:
            if pretrained_length == 30:
                from hear21passt.base30sec import get_basic_model  # type: ignore
                max_duration = 30
            elif pretrained_length == 20:
                from hear21passt.base20sec import get_basic_model  # type: ignore
                max_duration = 20
            else:
                from hear21passt.base import get_basic_model  # type: ignore
                # Original PASST was trained on AudioSet with 10s-long audio samples
                max_duration = 10
            min_duration = 0.15
            min_duration = 0.15
        except ModuleNotFoundError:
            raise ModuleNotFoundError(
                "Please install hear21passt to compute KL divergence: ",
                "pip install 'git+https://github.com/kkoutini/passt_hear21@0.0.19#egg=hear21passt'"
            )
        model_sample_rate = 32_000
        max_input_frames = int(max_duration * model_sample_rate)
        min_input_frames = int(min_duration * model_sample_rate)
        with open(os.devnull, 'w') as f, contextlib.redirect_stdout(f):
            model = get_basic_model(mode='logits')
        return model, model_sample_rate, max_input_frames, min_input_frames

    def _process_audio(self, wav: torch.Tensor, sample_rate: int, wav_len: int) -> tp.List[torch.Tensor]:
        """Process audio to feed to the pretrained model."""
        wav = wav.unsqueeze(0)
        wav = wav[..., :wav_len]
        wav = convert_audio(wav, from_rate=sample_rate, to_rate=self.model_sample_rate, to_channels=1)
        wav = wav.squeeze(0)
        # we don't pad but return a list of audio segments as this otherwise affects the KLD computation
        segments = torch.split(wav, self.max_input_frames, dim=-1)
        valid_segments = []
        for s in segments:
            # ignoring too small segments that are breaking the model inference
            if s.size(-1) > self.min_input_frames:
                valid_segments.append(s)
        return [s[None] for s in valid_segments]

    def _get_model_preds(self, wav: torch.Tensor) -> torch.Tensor:
        """Run the pretrained model and get the predictions."""
        assert wav.dim() == 3, f"Unexpected number of dims for preprocessed wav: {wav.shape}"
        wav = wav.mean(dim=1)
        # PaSST is printing a lot of garbage that we are not interested in
        with open(os.devnull, "w") as f, contextlib.redirect_stdout(f):
            with torch.no_grad(), _patch_passt_stft():
                logits = self.model(wav.to(self.device))
                probs = torch.softmax(logits, dim=-1)
                return probs

    def _get_label_distribution(self, x: torch.Tensor, sizes: torch.Tensor,
                                sample_rates: torch.Tensor) -> tp.Optional[torch.Tensor]:
        """Get model output given provided input tensor.

        Args:
            x (torch.Tensor): Input audio tensor of shape [B, C, T].
            sizes (torch.Tensor): Actual audio sample length, of shape [B].
            sample_rates (torch.Tensor): Actual audio sample rate, of shape [B].
        Returns:
            probs (torch.Tensor, optional): Probabilities over labels, of shape [B, num_classes].
        """
        all_probs: tp.List[torch.Tensor] = []
        for i, wav in enumerate(x):
            sample_rate = int(sample_rates[i].item())
            wav_len = int(sizes[i].item())
            wav_segments = self._process_audio(wav, sample_rate, wav_len)
            for segment in wav_segments:
                probs = self._get_model_preds(segment).mean(dim=0)
                all_probs.append(probs)
        if len(all_probs) > 0:
            return torch.stack(all_probs, dim=0)
        else:
            return None