File size: 9,847 Bytes
ae29df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import datetime
import json
import logging
import librosa
import pickle
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
import yaml
from models.audiosep import AudioSep, get_model_class
def ignore_warnings():
import warnings
# Ignore UserWarning from torch.meshgrid
warnings.filterwarnings('ignore', category=UserWarning, module='torch.functional')
# Refined regex pattern to capture variations in the warning message
pattern = r"Some weights of the model checkpoint at roberta-base were not used when initializing RobertaModel: \['lm_head\..*'\].*"
warnings.filterwarnings('ignore', message=pattern)
def create_logging(log_dir, filemode):
os.makedirs(log_dir, exist_ok=True)
i1 = 0
while os.path.isfile(os.path.join(log_dir, "{:04d}.log".format(i1))):
i1 += 1
log_path = os.path.join(log_dir, "{:04d}.log".format(i1))
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s",
datefmt="%a, %d %b %Y %H:%M:%S",
filename=log_path,
filemode=filemode,
)
# Print to console
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter("%(name)-12s: %(levelname)-8s %(message)s")
console.setFormatter(formatter)
logging.getLogger("").addHandler(console)
return logging
def float32_to_int16(x: float) -> int:
x = np.clip(x, a_min=-1, a_max=1)
return (x * 32767.0).astype(np.int16)
def int16_to_float32(x: int) -> float:
return (x / 32767.0).astype(np.float32)
def parse_yaml(config_yaml: str) -> Dict:
r"""Parse yaml file.
Args:
config_yaml (str): config yaml path
Returns:
yaml_dict (Dict): parsed yaml file
"""
with open(config_yaml, "r") as fr:
return yaml.load(fr, Loader=yaml.FullLoader)
def get_audioset632_id_to_lb(ontology_path: str) -> Dict:
r"""Get AudioSet 632 classes ID to label mapping."""
audioset632_id_to_lb = {}
with open(ontology_path) as f:
data_list = json.load(f)
for e in data_list:
audioset632_id_to_lb[e["id"]] = e["name"]
return audioset632_id_to_lb
def load_pretrained_panns(
model_type: str,
checkpoint_path: str,
freeze: bool
) -> nn.Module:
r"""Load pretrained pretrained audio neural networks (PANNs).
Args:
model_type: str, e.g., "Cnn14"
checkpoint_path, str, e.g., "Cnn14_mAP=0.431.pth"
freeze: bool
Returns:
model: nn.Module
"""
if model_type == "Cnn14":
Model = Cnn14
elif model_type == "Cnn14_DecisionLevelMax":
Model = Cnn14_DecisionLevelMax
else:
raise NotImplementedError
model = Model(sample_rate=32000, window_size=1024, hop_size=320,
mel_bins=64, fmin=50, fmax=14000, classes_num=527)
if checkpoint_path:
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
if freeze:
for param in model.parameters():
param.requires_grad = False
return model
def energy(x):
return torch.mean(x ** 2)
def magnitude_to_db(x):
eps = 1e-10
return 20. * np.log10(max(x, eps))
def db_to_magnitude(x):
return 10. ** (x / 20)
def ids_to_hots(ids, classes_num, device):
hots = torch.zeros(classes_num).to(device)
for id in ids:
hots[id] = 1
return hots
def calculate_sdr(
ref: np.ndarray,
est: np.ndarray,
eps=1e-10
) -> float:
r"""Calculate SDR between reference and estimation.
Args:
ref (np.ndarray), reference signal
est (np.ndarray), estimated signal
"""
reference = ref
noise = est - reference
numerator = np.clip(a=np.mean(reference ** 2), a_min=eps, a_max=None)
denominator = np.clip(a=np.mean(noise ** 2), a_min=eps, a_max=None)
sdr = 10. * np.log10(numerator / denominator)
return sdr
def calculate_sisdr(ref, est):
r"""Calculate SDR between reference and estimation.
Args:
ref (np.ndarray), reference signal
est (np.ndarray), estimated signal
"""
eps = np.finfo(ref.dtype).eps
reference = ref.copy()
estimate = est.copy()
reference = reference.reshape(reference.size, 1)
estimate = estimate.reshape(estimate.size, 1)
Rss = np.dot(reference.T, reference)
# get the scaling factor for clean sources
a = (eps + np.dot(reference.T, estimate)) / (Rss + eps)
e_true = a * reference
e_res = estimate - e_true
Sss = (e_true**2).sum()
Snn = (e_res**2).sum()
sisdr = 10 * np.log10((eps+ Sss)/(eps + Snn))
return sisdr
class StatisticsContainer(object):
def __init__(self, statistics_path):
self.statistics_path = statistics_path
self.backup_statistics_path = "{}_{}.pkl".format(
os.path.splitext(self.statistics_path)[0],
datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"),
)
self.statistics_dict = {"balanced_train": [], "test": []}
def append(self, steps, statistics, split, flush=True):
statistics["steps"] = steps
self.statistics_dict[split].append(statistics)
if flush:
self.flush()
def flush(self):
pickle.dump(self.statistics_dict, open(self.statistics_path, "wb"))
pickle.dump(self.statistics_dict, open(self.backup_statistics_path, "wb"))
logging.info(" Dump statistics to {}".format(self.statistics_path))
logging.info(" Dump statistics to {}".format(self.backup_statistics_path))
def get_mean_sdr_from_dict(sdris_dict):
mean_sdr = np.nanmean(list(sdris_dict.values()))
return mean_sdr
def remove_silence(audio: np.ndarray, sample_rate: int) -> np.ndarray:
r"""Remove silent frames."""
window_size = int(sample_rate * 0.1)
threshold = 0.02
frames = librosa.util.frame(x=audio, frame_length=window_size, hop_length=window_size).T
# shape: (frames_num, window_size)
new_frames = get_active_frames(frames, threshold)
# shape: (new_frames_num, window_size)
new_audio = new_frames.flatten()
# shape: (new_audio_samples,)
return new_audio
def get_active_frames(frames: np.ndarray, threshold: float) -> np.ndarray:
r"""Get active frames."""
energy = np.max(np.abs(frames), axis=-1)
# shape: (frames_num,)
active_indexes = np.where(energy > threshold)[0]
# shape: (new_frames_num,)
new_frames = frames[active_indexes]
# shape: (new_frames_num,)
return new_frames
def repeat_to_length(audio: np.ndarray, segment_samples: int) -> np.ndarray:
r"""Repeat audio to length."""
repeats_num = (segment_samples // audio.shape[-1]) + 1
audio = np.tile(audio, repeats_num)[0 : segment_samples]
return audio
def calculate_segmentwise_sdr(ref, est, hop_samples, return_sdr_list=False):
min_len = min(ref.shape[-1], est.shape[-1])
pointer = 0
sdrs = []
while pointer + hop_samples < min_len:
sdr = calculate_sdr(
ref=ref[:, pointer : pointer + hop_samples],
est=est[:, pointer : pointer + hop_samples],
)
sdrs.append(sdr)
pointer += hop_samples
sdr = np.nanmedian(sdrs)
if return_sdr_list:
return sdr, sdrs
else:
return sdr
def loudness(data, input_loudness, target_loudness):
""" Loudness normalize a signal.
Normalize an input signal to a user loudness in dB LKFS.
Params
-------
data : torch.Tensor
Input multichannel audio data.
input_loudness : float
Loudness of the input in dB LUFS.
target_loudness : float
Target loudness of the output in dB LUFS.
Returns
-------
output : torch.Tensor
Loudness normalized output data.
"""
# calculate the gain needed to scale to the desired loudness level
delta_loudness = target_loudness - input_loudness
gain = torch.pow(10.0, delta_loudness / 20.0)
output = gain * data
# check for potentially clipped samples
# if torch.max(torch.abs(output)) >= 1.0:
# warnings.warn("Possible clipped samples in output.")
return output
def load_ss_model(
configs: Dict,
checkpoint_path: str,
query_encoder: nn.Module
) -> nn.Module:
r"""Load trained universal source separation model.
Args:
configs (Dict)
checkpoint_path (str): path of the checkpoint to load
device (str): e.g., "cpu" | "cuda"
Returns:
pl_model: pl.LightningModule
"""
ss_model_type = configs["model"]["model_type"]
input_channels = configs["model"]["input_channels"]
output_channels = configs["model"]["output_channels"]
condition_size = configs["model"]["condition_size"]
# Initialize separation model
SsModel = get_model_class(model_type=ss_model_type)
ss_model = SsModel(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
# Load PyTorch Lightning model
pl_model = AudioSep.load_from_checkpoint(
checkpoint_path=checkpoint_path,
strict=False,
ss_model=ss_model,
waveform_mixer=None,
query_encoder=query_encoder,
loss_function=None,
optimizer_type=None,
learning_rate=None,
lr_lambda_func=None,
map_location=torch.device('cpu'),
)
return pl_model
def parse_yaml(config_yaml: str) -> Dict:
r"""Parse yaml file.
Args:
config_yaml (str): config yaml path
Returns:
yaml_dict (Dict): parsed yaml file
"""
with open(config_yaml, "r") as fr:
return yaml.load(fr, Loader=yaml.FullLoader) |