File size: 1,525 Bytes
21d2367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
import openai
from decouple import config
from gtts import gTTS
import os
import win32com.client
import pythoncom
import config
openai.api_key = config.API_KEYS['openai']
# The Models Job or role
messages = [
{"role": "system", "content": "You are a helpful assistant."},
]
# language = 'en'
# Main method goes here
def decipher(audio):
global messages
# Using openAI's speech to text model
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file)
messages.append({"role": "user", "content": transcript["text"]})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages
)
system_message = response["choices"][0]["message"]["content"]
pythoncom.CoInitialize()
speaker = win32com.client.Dispatch("SAPI.SpVoice")
speaker.Speak(system_message)
# myobj = gTTS(text=system_message, lang=language, slow=False)
# myobj.save("welcome.mp3")
# # Playing the converted file
# os.system("start welcome.mp3")
messages.append({"role": "assistant", "content": system_message},)
chat_transcript = ""
for message in messages:
if message['role'] != 'system':
chat_transcript += message['role'] + ": " + message['content'] + "\n\n"
return chat_transcript
# Using Gradio's audio Interface
interface = gr.Interface(fn=decipher, inputs=gr.Audio(
source="microphone", type="filepath"), outputs="text")
interface.launch(share=True) |