File size: 9,787 Bytes
05e6f93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from rich.progress import Progress, SpinnerColumn, TextColumn
from rich import print
from transformers import AutoModelForObjectDetection
import torch
from PIL import Image
from torchvision import transforms
import os


class TableDetector(object):
    _model = None  # Static variable to hold the table detection model
    _device = None  # Static variable to hold the device information

    def __init__(self):
        pass

    class MaxResize(object):
        def __init__(self, max_size=800):
            self.max_size = max_size

        def __call__(self, image):
            width, height = image.size
            current_max_size = max(width, height)
            scale = self.max_size / current_max_size
            resized_image = image.resize((int(round(scale * width)), int(round(scale * height))))

            return resized_image

    @classmethod
    def _initialize_model(cls, invoke_pipeline_step, local):
        """
        Static method to initialize the table detection model if not already initialized.
        """
        if cls._model is None:
            # Use invoke_pipeline_step to load the model
            cls._model, cls._device = invoke_pipeline_step(
                lambda: cls.load_table_detection_model(),
                "Loading table detection model...",
                local
            )
            print("Table detection model initialized.")


    def detect_tables(self, file_path, local=True, debug_dir=None, debug=False):
        # Ensure the model is initialized using invoke_pipeline_step
        self._initialize_model(self.invoke_pipeline_step, local)

        # Use the static model and device
        model, device = self._model, self._device

        outputs, image = self.invoke_pipeline_step(
            lambda: self.prepare_image(file_path, model, device),
            "Preparing image for table detection...",
            local
        )

        objects = self.invoke_pipeline_step(
            lambda: self.identify_tables(model, outputs, image),
            "Identifying tables in the image...",
            local
        )

        cropped_tables = self.invoke_pipeline_step(
            lambda: self.crop_tables(file_path, image, objects, debug, debug_dir),
            "Cropping tables from the image...",
            local
        )

        return cropped_tables


    @staticmethod
    def load_table_detection_model():
        model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")

        device = "cuda" if torch.cuda.is_available() else "cpu"
        model.to(device)

        return model, device


    def prepare_image(self, file_path, model, device):
        image = Image.open(file_path).convert("RGB")

        detection_transform = transforms.Compose([
            self.MaxResize(800),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])

        pixel_values = detection_transform(image).unsqueeze(0)
        pixel_values = pixel_values.to(device)

        with torch.no_grad():
            outputs = model(pixel_values)

        return outputs, image

    def identify_tables(self, model, outputs, image):
        id2label = model.config.id2label
        id2label[len(model.config.id2label)] = "no object"

        objects = self.outputs_to_objects(outputs, image.size, id2label)
        return objects


    def crop_tables(self, file_path, image, objects, debug, debug_dir):
        tokens = []
        detection_class_thresholds = {
            "table": 0.5,
            "table rotated": 0.5,
            "no object": 10
        }
        crop_padding = 30

        tables_crops = self.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding)

        cropped_tables = []

        if len(tables_crops) == 0:
            if debug:
                print("No tables detected in: ", file_path)

            return None
        elif len(tables_crops) > 1:
            for i, table_crop in enumerate(tables_crops):
                if debug:
                    print("Table detected in:", file_path, "-", i + 1)

                cropped_table = table_crop['image'].convert("RGB")
                cropped_tables.append(cropped_table)

                if debug_dir:
                    file_name_table = self.append_filename(file_path, debug_dir, f"table_cropped_{i + 1}")
                    cropped_table.save(file_name_table)
        else:
            if debug:
                print("Table detected in: ", file_path)

            cropped_table = tables_crops[0]['image'].convert("RGB")
            cropped_tables.append(cropped_table)

            if debug_dir:
                file_name_table = self.append_filename(file_path, debug_dir, "table_cropped")
                cropped_table.save(file_name_table)

        return cropped_tables

    # for output bounding box post-processing
    @staticmethod
    def box_cxcywh_to_xyxy(x):
        x_c, y_c, w, h = x.unbind(-1)
        b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
        return torch.stack(b, dim=1)

    def rescale_bboxes(self, out_bbox, size):
        img_w, img_h = size
        b = self.box_cxcywh_to_xyxy(out_bbox)
        b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
        return b

    def outputs_to_objects(self, outputs, img_size, id2label):
        m = outputs.logits.softmax(-1).max(-1)
        pred_labels = list(m.indices.detach().cpu().numpy())[0]
        pred_scores = list(m.values.detach().cpu().numpy())[0]
        pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
        pred_bboxes = [elem.tolist() for elem in self.rescale_bboxes(pred_bboxes, img_size)]

        objects = []
        for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
            class_label = id2label[int(label)]
            if not class_label == 'no object':
                objects.append({'label': class_label, 'score': float(score),
                                'bbox': [float(elem) for elem in bbox]})

        return objects

    def objects_to_crops(self, img, tokens, objects, class_thresholds, padding=10):
        """
        Process the bounding boxes produced by the table detection model into
        cropped table images and cropped tokens.
        """

        table_crops = []
        for obj in objects:
            if obj['score'] < class_thresholds[obj['label']]:
                continue

            cropped_table = {}

            bbox = obj['bbox']
            bbox = [bbox[0] - padding, bbox[1] - padding, bbox[2] + padding, bbox[3] + padding]

            cropped_img = img.crop(bbox)

            table_tokens = [token for token in tokens if self.iob(token['bbox'], bbox) >= 0.5]
            for token in table_tokens:
                token['bbox'] = [token['bbox'][0] - bbox[0],
                                 token['bbox'][1] - bbox[1],
                                 token['bbox'][2] - bbox[0],
                                 token['bbox'][3] - bbox[1]]

            # If table is predicted to be rotated, rotate cropped image and tokens/words:
            if obj['label'] == 'table rotated':
                cropped_img = cropped_img.rotate(270, expand=True)
                for token in table_tokens:
                    bbox = token['bbox']
                    bbox = [cropped_img.size[0] - bbox[3] - 1,
                            bbox[0],
                            cropped_img.size[0] - bbox[1] - 1,
                            bbox[2]]
                    token['bbox'] = bbox

            cropped_table['image'] = cropped_img
            cropped_table['tokens'] = table_tokens

            table_crops.append(cropped_table)

        return table_crops


    @staticmethod
    def append_filename(file_path, debug_dir, word):
        directory, filename = os.path.split(file_path)
        name, ext = os.path.splitext(filename)
        new_filename = f"{name}_{word}{ext}"
        return os.path.join(debug_dir, new_filename)

    @staticmethod
    def iob(boxA, boxB):
        # Determine the coordinates of the intersection rectangle
        xA = max(boxA[0], boxB[0])
        yA = max(boxA[1], boxB[1])
        xB = min(boxA[2], boxB[2])
        yB = min(boxA[3], boxB[3])

        # Compute the area of intersection rectangle
        interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)

        # Compute the area of both the prediction and ground-truth rectangles
        boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
        boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)

        # Compute the intersection over box (IoB)
        iob = interArea / float(boxAArea)

        return iob


    @staticmethod
    def invoke_pipeline_step(task_call, task_description, local):
        if local:
            with Progress(
                    SpinnerColumn(),
                    TextColumn("[progress.description]{task.description}"),
                    transient=False,
            ) as progress:
                progress.add_task(description=task_description, total=None)
                ret = task_call()
        else:
            print(task_description)
            ret = task_call()

        return ret


if __name__ == "__main__":
    table_detector = TableDetector()

    # file_path = "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/bonds_table.png"
    # cropped_tables = table_detector.detect_tables(file_path, local=True, debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/", debug=True)

    # for i, cropped_table in enumerate(cropped_tables):
    #     file_name_table = table_detector.append_filename(file_path, "cropped_" + str(i))
    #     cropped_table.save(file_name_table)