File size: 3,264 Bytes
1e20656
 
5c5b397
 
 
aae6493
c05f598
 
 
 
 
b8f8c32
c05f598
 
 
 
 
29e3408
 
6d2c26e
c05f598
 
5c5b397
 
c05f598
 
 
 
 
 
 
 
 
dd43c79
a52d12d
 
cb04dfa
a52d12d
 
e2fec6b
a52d12d
 
7f6617e
12b6b1a
8f428af
32d2e2e
e2fec6b
12b6b1a
9dee9a0
e2fec6b
32d2e2e
8ff5ffd
e2fec6b
e17a842
4920d02
 
a52d12d
 
4920d02
12cd932
16b729b
7d9a734
66da2fe
c7a8f72
 
 
7d9a734
12cd932
8181851
12cd932
 
c7a8f72
3e981bf
27bf8b4
32d2e2e
5e90216
 
 
 
 
 
 
 
a61a907
 
0707d46
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#Bismillahir Rahmaanir Raheem
#Almadadh Ya Gause RadiAllahu Ta'alah Anh - Ameen


import gradio as gr
import pandas as pd
from pycaret.classification import load_model, predict_model



# load the trained model for predictions
model = load_model('tuned_blend_specific_model_19112021')


# define the function to call 
def predict(model, input_df):
	predictions_df = predict_model(estimator=model, data=input_df)
	predict_label = predictions_df["Label"][0] # either 1 (amputation yes) or 0 (amputation no)
	predict_score = predictions_df["Score"][0] # the prediction (accuracy)
	return "<b>AMPUTATION RISK: " + str(predict_label) + " SCORE: "+str(predict_score)+"</b>"  




#input_dict = {"AGE": age, "GENDER_F": gender, "RACE_Asian":	,"RACE_Black": ,	"RACE_Coloured":,	"RACE_Other":,	"RACE_White":,	"DIABETES_CLASS_Type 1 diabetes":}






# the parameters in this function, actually gets the inputs for the prediction 
def predict_amputation(age, gender, race, diabetes_type):
	#input_dict = {"AGE": 70.0, "GENDER_F": 0.0, "RACE_Asian": 1.0, "RACE_Black": 0.0,	"RACE_Coloured": 0.0,	"RACE_Other": 0.0,	"RACE_White": 0.0,	"DIABETES_CLASS_Type 1 diabetes":0.0}
	
	
	#input_dict = {"AGE": 70.0, "GENDER": 0.0, "RACE": 1.0, "DIABETES_CLASS":0.0, "AMPUTATION":0}
	
	
	#input_dict = {"AGE": 70, "GENDER": "F", "RACE": "Asian", "DIABETES_CLASS":"Type 2 diabetes", "AMPUTATION":''}
	
	
	#input_dict = {"AGE": 80, "GENDER": "F", "RACE": "Asian", "DIABETES_CLASS":"Type 2 diabetes", "AMPUTATION":''}
	
	diabetes_class = "Type "+str(diabetes_type)+" diabetes"
	gender = gender[0]
	input_dict = {"AGE": age, "GENDER": gender, "RACE": race, "DIABETES_CLASS":diabetes_class, "AMPUTATION":''}
	
	input_df = pd.DataFrame([input_dict])
	
	return gender#str(predict(model=model, input_df=input_df))
	#return str("ALLAH " + " " + str(age) + " " + gender + " " + race + diabetes_type)
	#return diabetes_type
	#return "ALLAH: "+str(predict(model=model, input_df=input_df)) # calls the predict function when 'submit' is clicked




title = "DIabetes-related Amputation Risk Calculator (DIARC)"

description = "A diabetes-related amputation machine learning model trained on the diabetes dataset from the Inkosi Albert Luthuli Central Hospital (IALCH) in Durban, KwaZulu-Natal, South Africa."

article = "<p style='text-align: center'><span style='font-size: 15pt;'>Copyright &copy; DIARC. 2021. All Rights Reserved. Contact Us: <a href='mailto:smtshali@wol.co.za'>Dr Sifisiso Mtshali</a> or <a href='mailto:mahomedo@ukzn.ac.za'>Dr Ozayr Mahomed</a></span></p>"




iface = gr.Interface(
		fn=predict_amputation, 
		title=title, 
		description=description, 
		article=article,
		inputs=[gr.inputs.Slider(minimum=0,maximum=100, step=1, default=0, label="Age"), gr.inputs.Dropdown(["Female", "Male"], default="Female", label="Gender"), gr.inputs.Dropdown(["Asian", "Black", "Coloured", "White", "Other"], default="Asian", label="Race"), gr.inputs.Dropdown(["1", "2"], default="1", label="Diabetes Type")], 
		outputs="text",
		theme="huggingface",
		examples=[
			[50, "Male", "Black", 2],
			[76, "Female", "Asian", 2],
			[12, "Female", "White", 1],
			[30, "Male", "Coloured", 1],
			[65, "Female", "Other", 2],
		],
)

iface.test_launch()		
if __name__ == "__main__":
	iface.launch()