Spaces:
Sleeping
Sleeping
File size: 22,836 Bytes
dcacefd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
#!/usr/bin/python
# -*- coding:utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle
from torch_scatter import scatter_softmax, scatter_mean, scatter_sum, scatter_std
from tools import _unit_edges_from_block_edges
from radial_basis import RadialBasis
def stable_norm(input, *args, **kwargs):
return torch.norm(input, *args, **kwargs)
input = input.clone()
with torch.no_grad():
sign = torch.sign(input)
input = torch.abs(input)
input.clamp_(min=1e-10)
input = sign * input
return torch.norm(input, *args, **kwargs)
class GET(nn.Module):
'''Equivariant Adaptive Block Transformer'''
def __init__(self, d_hidden, d_radial, n_channel, n_rbf, cutoff=7.0, d_edge=0, n_layers=4, n_head=4,
act_fn=nn.SiLU(), residual=True, dropout=0.1, z_requires_grad=True, pre_norm=False,
sparse_k=3):
super().__init__()
'''
:param d_hidden: Number of hidden features
:param d_radial: Number of features for calculating geometric relations
:param n_channel: Number of channels of coordinates of each unit
:param n_rbf: Dimension of RBF feature, 1 for not using rbf
:param cutoff: cutoff for RBF
:param d_edge: Number of features for the edge features
:param n_layers: Number of layer
:param act_fn: Non-linearity
:param residual: Use residual connections, we recommend not changing this one
:param dropout: probability of dropout
'''
self.n_layers = n_layers
self.pre_norm = pre_norm
self.sparse_k = sparse_k
if self.pre_norm:
self.pre_layernorm = EquivariantLayerNorm(d_hidden, n_channel, n_rbf, cutoff, act_fn)
for i in range(0, n_layers):
self.add_module(f'layer_{i}', GETLayer(d_hidden, d_radial, n_channel, n_rbf, cutoff, d_edge, n_head, act_fn, residual))
self.add_module(f'layernorm0_{i}', EquivariantLayerNorm(d_hidden, n_channel, n_rbf, cutoff, act_fn))
self.add_module(f'ffn_{i}', EquivariantFFN(
d_hidden, 4 * d_hidden, d_hidden, n_channel,
n_rbf, act_fn, residual, dropout,
z_requires_grad=z_requires_grad if i == n_layers - 1 else True
))
self.add_module(f'layernorm1_{i}', EquivariantLayerNorm(d_hidden, n_channel, n_rbf, cutoff, act_fn))
if not z_requires_grad:
self._modules[f'layernorm1_{n_layers - 1}'].sigma.requires_grad = False
# @torch.no_grad()
# def self_loop_edges(self, block_id, n_blocks):
# return None
# node_ids = torch.arange(n_blocks, device=block_id.device) # [Nb]
# self_loop = torch.stack([node_ids, node_ids], dim=1) # [Nb, 2]
# (unit_src, unit_dst), _ = _unit_edges_from_block_edges(block_id, self_loop)
# return torch.stack([unit_src, unit_dst], dim=0) # [2, \sum n_i^2]
def recover_scale(self, Z, block_id, batch_id, record_scale):
with torch.no_grad():
unit_batch_id = batch_id[block_id]
Z_c = scatter_mean(Z, unit_batch_id, dim=0) # [bs, n_channel, 3]
Z_c = Z_c[unit_batch_id] # [N, n_channel, 3]
Z_centered = Z - Z_c
Z = Z_c + Z_centered / record_scale[unit_batch_id]
return Z
def forward(self, H, Z, block_id, batch_id, edges, edge_attr=None, cached_unit_edge_info=None):
if cached_unit_edge_info is None:
with torch.no_grad():
cached_unit_edge_info = _unit_edges_from_block_edges(block_id, edges.T, Z, k=self.sparse_k) # [Eu], Eu = \sum_{i, j \in E} n_i * n_j
# # FFN self-loop
# self_loop = self.self_loop_edges(block_id, batch_id.shape[0])
batch_size, n_channel = batch_id.max() + 1, Z.shape[1]
record_scale = torch.ones((batch_size, n_channel, 1), dtype=torch.float, device=Z.device)
if self.pre_norm:
H, Z, rescale = self.pre_layernorm(H, Z, block_id, batch_id)
record_scale *= rescale
for i in range(self.n_layers):
# for attention visualization
# self._modules[f'layer_{i}'].prefix = self.prefix + f'_layer{i}'
H, Z = self._modules[f'layer_{i}'](H, Z, block_id, edges, edge_attr, cached_unit_edge_info)
H, Z, rescale = self._modules[f'layernorm0_{i}'](H, Z, block_id, batch_id)
record_scale *= rescale
H, Z = self._modules[f'ffn_{i}'](H, Z, block_id)
H, Z, rescale = self._modules[f'layernorm1_{i}'](H, Z, block_id, batch_id)
record_scale *= rescale
Z = self.recover_scale(Z, block_id, batch_id, record_scale)
return H, Z
'''
Below are the implementation of the equivariant adaptive block message passing mechanism
'''
class GETLayer(nn.Module):
'''
Equivariant Adaptive Block Transformer layer
'''
def __init__(self, d_hidden, d_radial, n_channel, n_rbf, cutoff=7.0,
d_edge=0, n_head=4, act_fn=nn.SiLU(), residual=True):
super(GETLayer, self).__init__()
self.residual = residual
self.reci_sqrt_d = 1 / math.sqrt(d_radial)
self.epsilon = 1e-8
self.n_rbf = n_rbf
self.cutoff = cutoff
self.n_head = n_head
assert d_radial % self.n_head == 0, f'd_radial not compatible with n_head ({d_radial} and {self.n_head})'
assert n_rbf % self.n_head == 0, f'n_rbf not compatible with n_head ({n_rbf} and {self.n_head})'
d_hidden_head, d_radial_head = d_hidden // self.n_head, d_radial // self.n_head
n_rbf_head = n_rbf // self.n_head
self.linear_qk = nn.Linear(d_hidden_head, d_radial_head * 2, bias=False)
self.linear_v = nn.Linear(d_hidden_head, d_radial_head)
if n_rbf > 1:
self.rbf = RadialBasis(num_radial=n_rbf, cutoff=cutoff)
# self.dist_mlp = nn.Sequential(
# nn.Linear(n_channel * n_rbf, 1, bias=False),
# act_fn
# )
self.att_mlp = nn.Sequential(
nn.Linear(d_radial_head * 3 + n_channel * n_rbf_head, d_radial_head),
# radial*3 means H_q, H_k and edge_attr
act_fn,
nn.Linear(d_radial_head, d_radial_head),
act_fn
)
self.unit_att_linear = nn.Linear(d_radial_head, 1)
self.block_att_linear = nn.Linear(d_radial_head, 1)
if d_edge != 0:
self.edge_linear = nn.Linear(d_edge, d_radial)
# self.edge_mlp = nn.Sequential(
# nn.Linear(d_edge, d_hidden_head),
# act_fn,
# nn.Linear(d_hidden_head, 1),
# act_fn
# )
self.node_mlp = nn.Sequential(
nn.Linear(d_radial, d_hidden),
act_fn,
nn.Linear(d_hidden, d_hidden),
act_fn
)
self.node_out_linear = nn.Linear(d_hidden, d_hidden)
self.coord_mlp = nn.Sequential(
nn.Linear(d_radial, d_hidden),
act_fn,
nn.Linear(d_hidden, n_head * n_channel),
act_fn
)
self.unit_msg_mlp = nn.Sequential(
nn.Linear(d_radial_head + n_channel * n_rbf_head, d_radial_head),
act_fn,
nn.Linear(d_radial_head, d_radial_head),
act_fn
)
self.unit_msg_coord_mlp = nn.Sequential(
nn.Linear(d_radial_head + n_channel * n_rbf_head, d_radial_head),
act_fn,
nn.Linear(d_radial_head, d_radial_head),
act_fn
)
self.unit_msg_coord_linear = nn.Linear(d_radial_head, n_channel)
# self.coord_mlp = nn.Sequential(
# nn.Linear(1, n_channel),
# act_fn
# )
def attention(self, H, Z, edges, edge_attr, cached_unit_edge_info):
row, col = edges
(unit_row, unit_col), (block_edge_id, unit_edge_src_start, unit_edge_src_id) = cached_unit_edge_info
# multi-head
H = H.view(H.shape[0], self.n_head, -1) # [N, n_head, hidden_size / n_head]
# calculate attention
H_qk = self.linear_qk(H)
H_q, H_k = H_qk[..., 0::2][unit_row], H_qk[..., 1::2][unit_col] # [Eu, n_head, d_radial / n_head]
dZ = Z[unit_row] - Z[unit_col] # [E_u, n_channel, 3]
# D = dZ.bmm(dZ.transpose(1, 2)).view(D.shape[0], -1) # [Eu, n_channel^2]
# D_norm = torch.norm(D + 1e-16, dim=-1, keepdim=True)
# D = D / (1 + D_norm)
# D = torch.norm(dZ + 1e-16, dim=-1) # [Eu, n_channel]
D = stable_norm(dZ, dim=-1) # [Eu, n_channel]
if self.n_rbf > 1:
n_channel = D.shape[-1]
D = self.rbf(D.view(-1)).view(D.shape[0], n_channel, self.n_head,
-1) # [Eu, n_channel, n_head, n_rbf / n_head]
D = D.transpose(1, 2).reshape(D.shape[0], self.n_head, -1) # [Eu, n_head, n_channel * n_rbf / n_head]
else:
D = D.unsqueeze(1).repeat(1, self.n_head, 1) # [Eu, n_head, n_channel]
# R = self.reci_sqrt_d * (H_q * H_k).sum(-1) + self.dist_mlp(D).squeeze() # [Eu]
if edge_attr is None:
R_repr = torch.concat([H_q, H_k, D], dim=-1) # [Eu, n_head, (d_radial * 2 + n_channel * n_rbf) / n_head]
else:
edge_attr = self.edge_linear(edge_attr).view(edge_attr.shape[0], self.n_head, -1)
R_repr = torch.concat([H_q, H_k, D, edge_attr[block_edge_id]], dim=-1)
R_repr = self.att_mlp(R_repr) # [Eu, n_head, d_radial / n_head]
R = self.unit_att_linear(R_repr).squeeze(-1) # [Eu, n_head]
alpha = scatter_softmax(R, unit_edge_src_id, dim=0).unsqueeze(
-1) # [Eu, n_head, 1], unit-level attention within block-level edges
# alpha = F.silu(R).unsqueeze(-1)
# beta = scatter_mean(R, block_edge_id) # [Eb]
# if edge_attr is not None:
# beta = beta + self.edge_mlp(edge_attr).squeeze()
# directly use mean of R is not reasonble as the value before softmax has different scales in different pairs
# using max(R) - min(R) or max(R) - mean(R) are also not reasonable as the lowerbound will be 0 instead of -inf
# so we use pooling on the representation of unit attention
beta = self.block_att_linear(scatter_mean(R_repr, block_edge_id, dim=0)).squeeze(-1) # [Eb, n_head]
beta = scatter_softmax(beta, row, dim=0) # [Eb, n_head], block-level edge attention
# beta = F.silu(beta)
# for attention visualize
# pickle.dump((alpha, beta, edges, (unit_row, unit_col)), open(f'./attention/{self.prefix}.pkl', 'wb'))
beta = beta[block_edge_id[unit_edge_src_start]].unsqueeze(-1) # [Em, n_head, 1], Em = \sum_{i, j \in E} n_i
return alpha, beta, (D, R, dZ)
def invariant_update(self, H_v, H, alpha, beta, D, cached_unit_edge_info):
(unit_row, unit_col), (block_edge_id, unit_edge_src_start, unit_edge_src_id) = cached_unit_edge_info
unit_agg_row = unit_row[unit_edge_src_start]
# update invariant feature
H_v = self.unit_msg_mlp(torch.cat([H_v[unit_col], D], dim=-1)) # [Eu, n_head, d_radial / n_head]
H_agg = scatter_sum(alpha * H_v, unit_edge_src_id, dim=0) # [Em, n_head, hidden_size / n_head]
H_agg = H_agg.view(H_agg.shape[0], -1) # [Em, hidden_size]
H_agg = self.node_mlp(H_agg) # [Em, hidden_size]
H_agg = H_agg.view(H_agg.shape[0], self.n_head, -1) # [Em, n_head, hidden_size / n_head]
H_agg = scatter_sum(beta * H_agg, unit_agg_row, dim=0, dim_size=H.shape[0]) # [N, n_head, hidden_size / n_head]
H_agg = H_agg.view(H_agg.shape[0], -1) # [N, hidden_size]
H_agg = self.node_out_linear(H_agg)
H = H + H_agg if self.residual else H_agg
return H
def equivariant_update(self, H_v, Z, alpha, beta, D, dZ, cached_unit_edge_info):
(unit_row, unit_col), (block_edge_id, unit_edge_src_start, unit_edge_src_id) = cached_unit_edge_info
unit_agg_row = unit_row[unit_edge_src_start]
# update equivariant feature
# H_v = self.unit_msg_coord_mlp(torch.cat([H_v[unit_col], D], dim=-1)) # [Eu, n_head, n_channel]
H_v = self.unit_msg_coord_mlp(torch.cat([H_v[unit_col], D], dim=-1)) # [Eu, n_head, d_radial / n_head]
Z_agg = scatter_sum(
(alpha * self.unit_msg_coord_linear(H_v)).unsqueeze(-1) * dZ.unsqueeze(1),
unit_edge_src_id, dim=0) # [Em, n_head, n_channel, 3]
Z_H_agg = scatter_sum(alpha * H_v, unit_edge_src_id, dim=0) # [Em, n_head, d_radial / n_head]
Z_H_agg = self.coord_mlp(Z_H_agg.view(Z_H_agg.shape[0], -1)) # [Em, d_radial]
Z_H_agg = Z_H_agg.view(Z_H_agg.shape[0], self.n_head, -1) # [Em, n_head, n_channel]
Z_agg = scatter_sum(
(beta * Z_H_agg).unsqueeze(-1) * Z_agg, unit_agg_row,
dim=0, dim_size=Z.shape[0]) # [N, n_head, n_channel, 3]
Z_agg = Z_agg.sum(dim=1) # [N, n_channel, 3]
Z = Z + Z_agg
return Z
def forward(self, H, Z, block_id, edges, edge_attr=None, cached_unit_edge_info=None):
'''
H: [N, hidden_size],
Z: [N, n_channel, 3],
block_id: [N],
edges: [2, E], list of [n_row] and [n_col] where n_row == n_col == E, nodes from col are used to update nodes from row
edge_attr: [E]
cached_unit_edge_info: unit level (row, col), (block_edge_id, unit_edge_src_start, unit_edge_src_id) calculated from block edges
'''
with torch.no_grad():
if cached_unit_edge_info is None:
cached_unit_edge_info = _unit_edges_from_block_edges(block_id,
edges.T) # [Eu], Eu = \sum_{i, j \in E} n_i * n_j
alpha, beta, (D, R, dZ) = self.attention(H, Z, edges, edge_attr, cached_unit_edge_info)
H_v = self.linear_v(H.view(H.shape[0], self.n_head, -1)) # [N, n_head, d_radial / n_head]
H = self.invariant_update(H_v, H, alpha, beta, D, cached_unit_edge_info)
Z = self.equivariant_update(H_v, Z, alpha, beta, D, dZ, cached_unit_edge_info)
return H, Z
class EquivariantFFN(nn.Module):
def __init__(self, d_in, d_hidden, d_out, n_channel, n_rbf=16, act_fn=nn.SiLU(),
residual=True, dropout=0.1, constant=1, z_requires_grad=True) -> None:
super().__init__()
self.constant = constant
self.residual = residual
self.n_rbf = n_rbf
# self.mlp_msg = nn.Sequential(
# nn.Linear(d_in * 2 + n_channel * n_rbf, d_hidden),
# act_fn,
# nn.Dropout(dropout),
# nn.Linear(d_hidden, d_hidden),
# act_fn,
# nn.Dropout(dropout),
# )
self.mlp_h = nn.Sequential(
nn.Linear(d_in * 2 + n_channel * n_rbf, d_hidden),
act_fn,
nn.Dropout(dropout),
nn.Linear(d_hidden, d_hidden),
act_fn,
nn.Dropout(dropout),
nn.Linear(d_hidden, d_out),
nn.Dropout(dropout)
)
self.mlp_z = nn.Sequential(
nn.Linear(d_in * 2 + n_channel * n_rbf, d_hidden),
act_fn,
nn.Dropout(dropout),
nn.Linear(d_hidden, d_hidden),
act_fn,
nn.Dropout(dropout),
nn.Linear(d_hidden, n_channel),
nn.Dropout(dropout)
)
# self.mlp_z = nn.Linear(d_hidden, n_channel)
if not z_requires_grad:
for param in self.mlp_z.parameters():
param.requires_grad = False
self.rbf = RadialBasis(n_rbf, 7.0)
# self.linear_radial = nn.Linear(n_channel * n_rbf, d_in)
# self.linear_radial = nn.Linear(n_channel * n_channel, d_in)
def forward(self, H, Z, block_id):
'''
:param H: [N, d_in]
:param Z: [N, n_channel, 3]
:param block_id: [Nu]
'''
# row, col = self_loop
# Z_diff = Z[row] - Z[col] # [E, n_channel, 3]
# radial = stable_norm(Z_diff, dim=-1) # [E, n_channel]
# radial = self.rbf(radial.view(-1)).view(radial.shape[0], -1) # [E, n_channel * n_rbf]
# msg = self.mlp_msg(torch.cat([H[row], H[col], radial], dim=-1)) # [E, d_hidden]
# agg = scatter_sum(msg, row, dim=0) # [Nu, d_hidden]
# H_update = self.mlp_h(torch.cat([H, agg], dim=-1)) # [Nu, d_out]
# H = H + H_update if self.residual else H_update
# Z = Z + scatter_sum(self.mlp_z(msg).unsqueeze(-1) * Z_diff, row, dim=0)
# return H, Z
radial, (Z_c, Z_o) = self._radial(Z, block_id) # [N, n_hidden_channel], ([N, 1, 3], [N, n_channel, 3]
H_c = scatter_mean(H, block_id, dim=0)[block_id] # [N, d_in]
inputs = torch.cat([H, H_c, radial], dim=-1) # [N, d_in + d_in + d_in]
H_update = self.mlp_h(inputs)
H = H + H_update if self.residual else H_update
Z = Z_c + self.mlp_z(inputs).unsqueeze(-1) * Z_o
return H, Z
def _radial(self, Z, block_id):
Z_c = scatter_mean(Z, block_id, dim=0) # [Nb, n_channel, 3]
Z_c = Z_c[block_id]
Z_o = Z - Z_c # [N, n_channel, 3], no translation
D = stable_norm(Z_o, dim=-1) # [N, n_channel]
radial = self.rbf(D.view(-1)).view(D.shape[0], -1) # [N, n_channel * n_rbf]
# radial = Z_o.bmm(Z_o.transpose(1, 2)) # [N, n_channel, n_channel], no orthogonal transformation
# radial = radial.reshape(Z.shape[0], -1) # [N, n_channel^2]
# # radial_norm = torch.norm(radial + 1e-16, dim=-1, keepdim=True) # [N, 1]
# radial_norm = stable_norm(radial, dim=-1, keepdim=True) # [N, 1]
# radial = radial / (self.constant + radial_norm) # normalize for numerical stability
# radial = self.linear_radial(radial) # [N, d_in]
return radial, (Z_c, Z_o)
class EquivariantLayerNorm(nn.Module):
def __init__(self, d_hidden, n_channel, n_rbf=16, cutoff=7.0, act_fn=nn.SiLU()) -> None:
super().__init__()
# invariant
self.fuse_scale_ffn = nn.Sequential(
nn.Linear(n_channel * n_rbf, d_hidden),
act_fn,
nn.Linear(d_hidden, d_hidden),
act_fn
)
self.layernorm = nn.LayerNorm(d_hidden)
# geometric
sigma = torch.ones((1, n_channel, 1))
self.sigma = nn.Parameter(sigma, requires_grad=True)
self.rbf = RadialBasis(num_radial=n_rbf, cutoff=cutoff)
def forward(self, H, Z, block_id, batch_id):
with torch.no_grad():
_, n_channel, n_axis = Z.shape
unit_batch_id = batch_id[block_id]
unit_axis_batch_id = unit_batch_id.unsqueeze(-1).repeat(1, n_axis).flatten() # [N * 3]
# H = self.layernorm(H)
Z_c = scatter_mean(Z, unit_batch_id, dim=0) # [bs, n_channel, 3]
Z_c = Z_c[unit_batch_id] # [N, n_channel, 3]
Z_centered = Z - Z_c
var = scatter_std(
Z_centered.transpose(1, 2).reshape(-1, n_channel).contiguous(),
unit_axis_batch_id, dim=0) # [bs, n_channel]
# var = var[unit_batch_id].unsqueeze(-1) # [N, n_channel, 1]
# Z = Z_c + Z_centered / var * self.sigma
rescale = (1 / var).unsqueeze(-1) * self.sigma # [bs, n_channel, 1]
Z = Z_c + Z_centered * rescale[unit_batch_id]
rescale_rbf = self.rbf(rescale.view(-1)).view(rescale.shape[0], -1) # [bs, n_channel * n_rbf]
H = H + self.fuse_scale_ffn(rescale_rbf)[unit_batch_id]
H = self.layernorm(H)
return H, Z, rescale
class GETEncoder(nn.Module):
def __init__(self, hidden_size, radial_size, n_channel,
n_rbf=1, cutoff=7.0, edge_size=16, n_layers=3,
n_head=1, dropout=0.1,
z_requires_grad=True, stable=False) -> None:
super().__init__()
self.encoder = GET(
hidden_size, radial_size, n_channel,
n_rbf, cutoff, edge_size, n_layers,
n_head, dropout=dropout,
z_requires_grad=z_requires_grad
)
def forward(self, H, Z, block_id, batch_id, edges, edge_attr=None):
H, pred_Z = self.encoder(H, Z, block_id, batch_id, edges, edge_attr)
# block_repr = scatter_mean(H, block_id, dim=0) # [Nb, hidden]
block_repr = scatter_sum(H, block_id, dim=0) # [Nb, hidden]
block_repr = F.normalize(block_repr, dim=-1)
# graph_repr = scatter_mean(block_repr, batch_id, dim=0) # [bs, hidden]
graph_repr = scatter_sum(block_repr, batch_id, dim=0) # [bs, hidden]
graph_repr = F.normalize(graph_repr, dim=-1)
return H, block_repr, graph_repr, pred_Z
if __name__ == '__main__':
d_hidden = 64
d_radial = 16
n_channel = 2
d_edge = 16
n_rbf = 16
n_head = 4
device = torch.device('cuda:0')
model = GET(d_hidden, d_radial, n_channel, n_rbf, d_edge=d_edge, n_head=n_head)
model.to(device)
model.eval()
block_id = torch.tensor([0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 6, 6, 7, 7], dtype=torch.long).to(device)
batch_id = torch.tensor([0, 0, 0, 0, 0, 1, 1, 1], dtype=torch.long).to(device)
src_dst = torch.tensor([[0, 1], [2, 3], [1, 3], [2, 4], [3, 0], [3, 3], [5, 7], [7, 6], [5, 6], [6, 7]],
dtype=torch.long).to(device)
src_dst = src_dst.T
edge_attr = torch.randn(len(src_dst[0]), d_edge).to(device)
n_unit = block_id.shape[0]
H = torch.randn(n_unit, d_hidden, device=device)
Z = torch.randn(n_unit, n_channel, 3, device=device)
print(_unit_edges_from_block_edges(block_id, src_dst.T, Z, k=3))
H1, Z1 = model(H, Z, block_id, batch_id, src_dst, edge_attr)
# random rotaion matrix
U, _, V = torch.linalg.svd(torch.randn(3, 3, device=device, dtype=torch.float))
if torch.linalg.det(U) * torch.linalg.det(V) < 0:
U[:, -1] = -U[:, -1]
Q1, t1 = U.mm(V), torch.randn(3, device=device)
U, _, V = torch.linalg.svd(torch.randn(3, 3, device=device, dtype=torch.float))
if torch.linalg.det(U) * torch.linalg.det(V) < 0:
U[:, -1] = -U[:, -1]
Q2, t2 = U.mm(V), torch.randn(3, device=device)
unit_batch_id = batch_id[block_id]
Z[unit_batch_id == 0] = torch.matmul(Z[unit_batch_id == 0], Q1) + t1
Z[unit_batch_id == 1] = torch.matmul(Z[unit_batch_id == 1], Q2) + t2
# Z = torch.matmul(Z, Q) + t
H2, Z2 = model(H, Z, block_id, batch_id, src_dst, edge_attr)
print(f'invariant feature: {torch.abs(H1 - H2).sum()}')
Z1[unit_batch_id == 0] = torch.matmul(Z1[unit_batch_id == 0], Q1) + t1
Z1[unit_batch_id == 1] = torch.matmul(Z1[unit_batch_id == 1], Q2) + t2
print(f'equivariant feature: {torch.abs(Z1 - Z2).sum()}') |