File size: 30,812 Bytes
10efe81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 |
import os
import shutil
import argparse
import random
import torch
import numpy as np
import math
from vina import Vina
from openbabel import pybel
import subprocess
import multiprocessing as mp
from functools import partial
from torch_geometric.data import Batch
from tqdm.auto import tqdm
from rdkit import Chem
from rdkit.Geometry import Point3D
from torch.utils.data import DataLoader
from rdkit.Chem.rdchem import BondType
from rdkit.Chem import ChemicalFeatures, rdMolDescriptors
from rdkit import RDConfig
from rdkit.Chem.Descriptors import MolLogP, qed
from copy import deepcopy
import tempfile
import AutoDockTools
import contextlib
from torch_scatter import scatter_add, scatter_mean
from rdkit.Geometry import Point3D
from meeko import MoleculePreparation
from meeko import obutils
from models.flag import FLAG
from utils.transforms import *
from utils.datasets import get_dataset
from utils.misc import *
from utils.data import *
from utils.mol_tree import *
from utils.chemutils import *
from utils.dihedral_utils import *
from utils.sascorer import compute_sa_score
from rdkit.Chem import AllChem
_fscores = None
ATOM_FAMILIES = ['Acceptor', 'Donor', 'Aromatic', 'Hydrophobe', 'LumpedHydrophobe', 'NegIonizable', 'PosIonizable',
'ZnBinder']
ATOM_FAMILIES_ID = {s: i for i, s in enumerate(ATOM_FAMILIES)}
STATUS_RUNNING = 'running'
STATUS_FINISHED = 'finished'
STATUS_FAILED = 'failed'
def supress_stdout(func):
def wrapper(*a, **ka):
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
return func(*a, **ka)
return wrapper
class PrepLig(object):
def __init__(self, input_mol, mol_format):
if mol_format == 'smi':
self.ob_mol = pybel.readstring('smi', input_mol)
elif mol_format == 'sdf':
self.ob_mol = next(pybel.readfile(mol_format, input_mol))
else:
raise ValueError(f'mol_format {mol_format} not supported')
def addH(self, polaronly=False, correctforph=True, PH=7):
self.ob_mol.OBMol.AddHydrogens(polaronly, correctforph, PH)
obutils.writeMolecule(self.ob_mol.OBMol, 'tmp_h.sdf')
def gen_conf(self):
sdf_block = self.ob_mol.write('sdf')
rdkit_mol = Chem.MolFromMolBlock(sdf_block, removeHs=False)
AllChem.EmbedMolecule(rdkit_mol, Chem.rdDistGeom.ETKDGv3())
self.ob_mol = pybel.readstring('sdf', Chem.MolToMolBlock(rdkit_mol))
obutils.writeMolecule(self.ob_mol.OBMol, 'conf_h.sdf')
@supress_stdout
def get_pdbqt(self, lig_pdbqt=None):
preparator = MoleculePreparation()
preparator.prepare(self.ob_mol.OBMol)
if lig_pdbqt is not None:
preparator.write_pdbqt_file(lig_pdbqt)
return
else:
return preparator.write_pdbqt_string()
class PrepProt(object):
def __init__(self, pdb_file):
self.prot = pdb_file
def del_water(self, dry_pdb_file): # optional
with open(self.prot) as f:
lines = [l for l in f.readlines() if l.startswith('ATOM') or l.startswith('HETATM')]
dry_lines = [l for l in lines if not 'HOH' in l]
with open(dry_pdb_file, 'w') as f:
f.write(''.join(dry_lines))
self.prot = dry_pdb_file
def addH(self, prot_pqr): # call pdb2pqr
self.prot_pqr = prot_pqr
subprocess.Popen(['pdb2pqr30', '--ff=AMBER', self.prot, self.prot_pqr],
stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL).communicate()
def get_pdbqt(self, prot_pdbqt):
prepare_receptor = os.path.join(AutoDockTools.__path__[0], 'Utilities24/prepare_receptor4.py')
subprocess.Popen(['python3', prepare_receptor, '-r', self.prot_pqr, '-o', prot_pdbqt],
stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL).communicate()
def calculate_vina(number, pro_path, lig_path):
lig_path = os.path.join(lig_path, str(number)+'.sdf')
size_factor = 1.2
buffer = 5.
# openmm_relax(pro_path)
# relax_sdf(lig_path)
mol = Chem.MolFromMolFile(lig_path, sanitize=True)
pos = mol.GetConformer(0).GetPositions()
center = np.mean(pos, 0)
ligand_pdbqt = './data/tmp/' + str(number) + '_lig.pdbqt'
protein_pqr = './data/tmp/' + str(number) + '_pro.pqr'
protein_pdbqt = './data/tmp/' + str(number) + '_pro.pdbqt'
lig = PrepLig(lig_path, 'sdf')
lig.addH()
lig.get_pdbqt(ligand_pdbqt)
prot = PrepProt(pro_path)
prot.addH(protein_pqr)
prot.get_pdbqt(protein_pdbqt)
v = Vina(sf_name='vina', seed=0, verbosity=0)
v.set_receptor(protein_pdbqt)
v.set_ligand_from_file(ligand_pdbqt)
x, y, z = (pos.max(0) - pos.min(0)) * size_factor + buffer
v.compute_vina_maps(center=center, box_size=[x, y, z])
energy = v.score()
print('Score before minimization: %.3f (kcal/mol)' % energy[0])
energy_minimized = v.optimize()
print('Score after minimization : %.3f (kcal/mol)' % energy_minimized[0])
v.dock(exhaustiveness=64, n_poses=32)
score = v.energies(n_poses=1)[0][0]
print('Score after docking : %.3f (kcal/mol)' % score)
return score
def get_feat(mol):
fdefName = os.path.join(RDConfig.RDDataDir, 'BaseFeatures.fdef')
factory = ChemicalFeatures.BuildFeatureFactory(fdefName)
atomic_numbers = torch.LongTensor([6, 7, 8, 9, 15, 16, 17]) # C N O F P S Cl
ptable = Chem.GetPeriodicTable()
Chem.SanitizeMol(mol)
feat_mat = np.zeros([mol.GetNumAtoms(), len(ATOM_FAMILIES)], dtype=np.int_)
for feat in factory.GetFeaturesForMol(mol):
feat_mat[feat.GetAtomIds(), ATOM_FAMILIES_ID[feat.GetFamily()]] = 1
ligand_element = torch.tensor([ptable.GetAtomicNumber(atom.GetSymbol()) for atom in mol.GetAtoms()])
element = ligand_element.view(-1, 1) == atomic_numbers.view(1, -1) # (N_atoms, N_elements)
return torch.cat([element, torch.tensor(feat_mat)], dim=-1).float()
def find_reference(protein_pos, focal_id):
# Select three reference protein atoms
d = torch.norm(protein_pos - protein_pos[focal_id], dim=1)
reference_idx = torch.topk(d, k=4, largest=False)[1]
reference_pos = protein_pos[reference_idx]
return reference_pos, reference_idx
def SetAtomNum(mol, atoms):
for atom in mol.GetAtoms():
if atom.GetIdx() in atoms:
atom.SetAtomMapNum(1)
else:
atom.SetAtomMapNum(0)
return mol
def SetMolPos(mol_list, pos_list):
new_mol_list = []
for i in range(len(pos_list)):
mol = mol_list[i]
conf = mol.GetConformer(0)
pos = pos_list[i].cpu().double().numpy()
if mol.GetNumAtoms() == len(pos):
for node in range(mol.GetNumAtoms()):
x, y, z = pos[node]
conf.SetAtomPosition(node, Point3D(x,y,z))
try:
AllChem.UFFOptimizeMolecule(mol)
new_mol_list.append(mol)
except:
new_mol_list.append(mol)
return new_mol_list
def lipinski(mol):
count = 0
if qed(mol) <= 5:
count += 1
if Chem.Lipinski.NumHDonors(mol) <= 5:
count += 1
if Chem.Lipinski.NumHAcceptors(mol) <= 10:
count += 1
if Chem.Descriptors.ExactMolWt(mol) <= 500:
count += 1
if Chem.Lipinski.NumRotatableBonds(mol) <= 5:
count += 1
return count
def refine_pos(ligand_pos, protein_pos, h_ctx_ligand, h_ctx_protein, model, batch, repeats, protein_batch,
ligand_batch):
protein_offsets = torch.cumsum(protein_batch.bincount(), dim=0)
ligand_offsets = torch.cumsum(ligand_batch.bincount(), dim=0)
protein_offsets, ligand_offsets = torch.cat([torch.tensor([0]), protein_offsets]), torch.cat([torch.tensor([0]), ligand_offsets])
sr_ligand_idx, sr_protein_idx = [], []
sr_ligand_idx0, sr_ligand_idx1 = [], []
for i in range(len(repeats)):
alpha_index = batch['alpha_carbon_indicator'][protein_batch == i].nonzero().reshape(-1)
ligand_atom_index = torch.arange(repeats[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, torch.arange(len(alpha_index))).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_protein_idx.append(alpha_index[q_idx] + protein_offsets[i])
p_idx, q_idx = torch.cartesian_prod(ligand_atom_index, ligand_atom_index).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
sr_ligand_idx0.append(ligand_atom_index[p_idx] + ligand_offsets[i])
sr_ligand_idx1.append(ligand_atom_index[q_idx] + ligand_offsets[i])
sr_ligand_idx, sr_protein_idx = torch.cat(sr_ligand_idx).long(), torch.cat(sr_protein_idx).long()
sr_ligand_idx0, sr_ligand_idx1 = torch.cat(sr_ligand_idx0).long(), torch.cat(sr_ligand_idx1).long()
dist_alpha = torch.norm(ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx], dim=1)
dist_intra = torch.norm(ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1], dim=1)
input_dir_alpha = ligand_pos[sr_ligand_idx] - protein_pos[sr_protein_idx]
input_dir_intra = ligand_pos[sr_ligand_idx0] - ligand_pos[sr_ligand_idx1]
distance_emb1 = model.encoder.distance_expansion(torch.norm(input_dir_alpha, dim=1))
distance_emb2 = model.encoder.distance_expansion(torch.norm(input_dir_intra, dim=1))
input1 = torch.cat([h_ctx_ligand[sr_ligand_idx], h_ctx_protein[sr_protein_idx], distance_emb1], dim=-1)[dist_alpha <= 10.0]
input2 = torch.cat([h_ctx_ligand[sr_ligand_idx0], h_ctx_ligand[sr_ligand_idx1], distance_emb2], dim=-1)[dist_intra <= 10.0]
# distance cut_off
norm_dir1 = F.normalize(input_dir_alpha, p=2, dim=1)[dist_alpha <= 10.0]
norm_dir2 = F.normalize(input_dir_intra, p=2, dim=1)[dist_intra <= 10.0]
force1 = scatter_mean(model.refine_protein(input1) * norm_dir1, dim=0, index=sr_ligand_idx[dist_alpha <= 10.0], dim_size=ligand_pos.size(0))
force2 = scatter_mean(model.refine_ligand(input2) * norm_dir2, dim=0, index=sr_ligand_idx0[dist_intra <= 10.0], dim_size=ligand_pos.size(0))
ligand_pos += force1
ligand_pos += force2
ligand_pos = [ligand_pos[ligand_batch==k].float() for k in range(len(repeats))]
return ligand_pos
def ligand_gen(batch, model, vocab, config, center, device, refinement=False):
pos_list = []
feat_list = []
motif_id = [0 for _ in range(config.sample.batch_size)]
finished = torch.zeros(config.sample.batch_size).bool()
for i in range(config.sample.max_steps):
print(i)
print(finished)
if torch.sum(finished) == config.sample.batch_size:
# mol_list = SetMolPos(mol_list, pos_list)
return mol_list, pos_list
if i == 0:
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'],
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=batch['ligand_context_pos'],
ligand_atom_feature=batch['ligand_context_feature_full'].float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=batch['ligand_context_element_batch'])
protein_atom_feature = batch['protein_atom_feature'].float()
focal_protein = focal_pred[mask_protein]
h_ctx_protein = h_ctx[mask_protein]
focus_score = torch.sigmoid(focal_protein)
#can_focus = focus_score > 0.5
slice_idx = torch.cat([torch.tensor([0]).to(device), torch.cumsum(batch['protein_element_batch'].bincount(), dim=0)])
focal_id = []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
focal_id.append(torch.argmax(focus.reshape(-1).float()).item() + slice_idx[j].item())
focal_id = torch.tensor(focal_id, device=device)
h_ctx_focal = h_ctx_protein[focal_id]
current_wid = torch.tensor([vocab.size()] * config.sample.batch_size, device=device)
next_motif_wid, motif_prob = model.forward_motif(h_ctx_focal, current_wid, torch.arange(config.sample.batch_size, device=device).to(device))
mol_list = [Chem.MolFromSmiles(vocab.get_smiles(id)) for id in next_motif_wid]
for j in range(config.sample.batch_size):
AllChem.EmbedMolecule(mol_list[j])
AllChem.UFFOptimizeMolecule(mol_list[j])
ligand_pos, ligand_feat = torch.tensor(mol_list[j].GetConformer().GetPositions(), device=device), get_feat(mol_list[j]).to(device)
feat_list.append(ligand_feat)
# set the initial positions with distance matrix
reference_pos, reference_idx = find_reference(batch['protein_pos'][slice_idx[j]:slice_idx[j + 1]], focal_id[j] - slice_idx[j])
p_idx, l_idx = torch.cartesian_prod(torch.arange(4), torch.arange(len(ligand_pos))).chunk(2, dim=-1)
p_idx = p_idx.squeeze(-1).to(device)
l_idx = l_idx.squeeze(-1).to(device)
d_m = model.dist_mlp(torch.cat([protein_atom_feature[reference_idx[p_idx]], ligand_feat[l_idx]], dim=-1)).reshape(4,len(ligand_pos))
d_m = d_m ** 2
p_d, l_d = self_square_dist(reference_pos), self_square_dist(ligand_pos)
D = torch.cat([torch.cat([p_d, d_m], dim=1), torch.cat([d_m.permute(1, 0), l_d], dim=1)])
coordinate = eig_coord_from_dist(D)
new_pos, _, _ = kabsch_torch(coordinate[:len(reference_pos)], reference_pos,
coordinate[len(reference_pos):])
# new_pos += (center*0.8+torch.mean(reference_pos, dim=0)*0.2) - torch.mean(new_pos, dim=0)
new_pos += (center - torch.mean(new_pos, dim=0)) * .8
pos_list.append(new_pos)
atom_to_motif = [{} for _ in range(config.sample.batch_size)]
motif_to_atoms = [{} for _ in range(config.sample.batch_size)]
motif_wid = [{} for _ in range(config.sample.batch_size)]
for j in range(config.sample.batch_size):
for k in range(mol_list[j].GetNumAtoms()):
atom_to_motif[j][k] = 0
for j in range(config.sample.batch_size):
motif_to_atoms[j][0] = list(np.arange(mol_list[j].GetNumAtoms()))
motif_wid[j][0] = next_motif_wid[j].item()
else:
repeats = torch.tensor([len(pos) for pos in pos_list], device=device)
ligand_batch = torch.repeat_interleave(torch.arange(config.sample.batch_size, device=device), repeats)
focal_pred, mask_protein, h_ctx = model(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch)
# structure refinement
if refinement:
pos_list = refine_pos(torch.cat(pos_list, dim=0).float(), batch['protein_pos'].float(),
h_ctx[~mask_protein], h_ctx[mask_protein], model, batch, repeats.tolist(),
batch['protein_element_batch'], ligand_batch)
focal_ligand = focal_pred[~mask_protein]
h_ctx_ligand = h_ctx[~mask_protein]
focus_score = torch.sigmoid(focal_ligand)
can_focus = focus_score > 0.
slice_idx = torch.cat([torch.tensor([0], device=device), torch.cumsum(repeats, dim=0)])
current_atoms_batch, current_atoms = [], []
for j in range(len(slice_idx) - 1):
focus = focus_score[slice_idx[j]:slice_idx[j + 1]]
if torch.sum(can_focus[slice_idx[j]:slice_idx[j + 1]]) > 0 and ~finished[j]:
sample_focal_atom = torch.multinomial(focus.reshape(-1).float(), 1)
focal_motif = atom_to_motif[j][sample_focal_atom.item()]
motif_id[j] = focal_motif
else:
finished[j] = True
current_atoms.extend((np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist())
current_atoms_batch.extend([j] * len(motif_to_atoms[j][motif_id[j]]))
mol_list[j] = SetAtomNum(mol_list[j], motif_to_atoms[j][motif_id[j]])
# second step: next motif prediction
current_wid = [motif_wid[j][motif_id[j]] for j in range(len(mol_list))]
next_motif_wid, motif_prob = model.forward_motif(h_ctx_ligand[torch.tensor(current_atoms)],
torch.tensor(current_wid).to(device),
torch.tensor(current_atoms_batch).to(device))
# assemble
next_motif_smiles = [vocab.get_smiles(id) for id in next_motif_wid]
new_mol_list, new_atoms, one_atom_attach, intersection, attach_fail = model.forward_attach(mol_list, next_motif_smiles, device)
for j in range(len(mol_list)):
if ~finished[j] and ~attach_fail[j]:
# num_new_atoms
mol_list[j] = new_mol_list[j]
rotatable = torch.logical_and(torch.tensor(current_atoms_batch).bincount() == 2, torch.tensor(one_atom_attach))
rotatable = torch.logical_and(rotatable, ~torch.tensor(attach_fail))
rotatable = torch.logical_and(rotatable, ~finished).to(device)
# update motif2atoms and atom2motif
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
motif_to_atoms[j][i] = new_atoms[j]
motif_wid[j][i] = next_motif_wid[j]
for k in new_atoms[j]:
atom_to_motif[j][k] = i
'''
if k in atom_to_motif[j]:
continue
else:
atom_to_motif[j][k] = i'''
# generate initial positions
for j in range(len(mol_list)):
if attach_fail[j] or finished[j]:
continue
mol = mol_list[j]
anchor = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 1]
# positions = mol.GetConformer().GetPositions()
anchor_pos = deepcopy(pos_list[j][anchor]).to(device)
Chem.SanitizeMol(mol)
AllChem.EmbedMolecule(mol, useRandomCoords=True)
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
anchor_pos_new = mol.GetConformer(0).GetPositions()[anchor]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
'''
R, T = kabsch(np.matrix(anchor_pos), np.matrix(anchor_pos_new))
new_pos = R * np.matrix(mol.GetConformer().GetPositions()[new_idx]).T + np.tile(T, (1, len(new_idx)))
new_pos = np.array(new_pos.T)'''
new_pos = mol.GetConformer().GetPositions()[new_idx]
new_pos, _, _ = kabsch_torch(torch.tensor(anchor_pos_new, device=device), anchor_pos, torch.tensor(new_pos, device=device))
conf = mol.GetConformer()
# update curated parameters
pos_list[j] = torch.cat([pos_list[j], new_pos])
feat_list[j] = get_feat(mol_list[j]).to(device)
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[j][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[j])
# predict alpha and rotate (only change the position)
if torch.sum(rotatable) > 0 and i >= 2:
repeats = torch.tensor([len(pos) for pos in pos_list])
ligand_batch = torch.repeat_interleave(torch.arange(len(pos_list)), repeats).to(device)
slice_idx = torch.cat([torch.tensor([0]), torch.cumsum(repeats, dim=0)])
xy_index = [(np.array(motif_to_atoms[j][motif_id[j]]) + slice_idx[j].item()).tolist() for j in range(len(slice_idx) - 1) if rotatable[j]]
alpha = model.forward_alpha(protein_pos=batch['protein_pos'].float(),
protein_atom_feature=batch['protein_atom_feature'].float(),
ligand_pos=torch.cat(pos_list, dim=0).float(),
ligand_atom_feature=torch.cat(feat_list, dim=0).float(),
batch_protein=batch['protein_element_batch'],
batch_ligand=ligand_batch, xy_index=torch.tensor(xy_index, device=device),
rotatable=rotatable)
rotatable_id = [id for id in range(len(mol_list)) if rotatable[id]]
xy_index = [motif_to_atoms[j][motif_id[j]] for j in range(len(slice_idx) - 1) if rotatable[j]]
x_index = [intersection[j] for j in range(len(slice_idx) - 1) if rotatable[j]]
y_index = [(set(xy_index[k]) - set(x_index[k])).pop() for k in range(len(x_index))]
for j in range(len(alpha)):
mol = mol_list[rotatable_id[j]]
new_idx = [atom.GetIdx() for atom in mol.GetAtoms() if atom.GetAtomMapNum() == 2]
positions = deepcopy(pos_list[rotatable_id[j]])
xn_pos = positions[new_idx].float()
dir=(positions[x_index[j]] - positions[y_index[j]]).reshape(-1)
ref=positions[x_index[j]].reshape(-1)
xn_pos = rand_rotate(dir.to(device), ref.to(device), xn_pos.to(device), alpha[j], device=device)
if xn_pos.shape[0] > 0:
pos_list[rotatable_id[j]][-len(xn_pos):] = xn_pos
conf = mol.GetConformer()
for node in range(mol.GetNumAtoms()):
conf.SetAtomPosition(node, np.array(pos_list[rotatable_id[j]][node].cpu()))
assert mol.GetNumAtoms() == len(pos_list[rotatable_id[j]])
return mol_list, pos_list
def demo(data_id):
vocab_path = 'vocab.txt'
device = 'cpu'
config = './configs/sample.yml'
vocab = []
for line in open(vocab_path):
p, _, _ = line.partition(':')
vocab.append(p)
vocab = Vocab(vocab)
# Load configs
config = load_config(config)
# Data
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = LigandMaskAll(vocab)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
dataset, subsets = get_dataset(
config=config.dataset,
transform=transform,
)
testset = subsets['test']
data = testset[data_id%100]
center = data['ligand_center'].to(device)
test_set = [data for _ in range(config.sample.num_samples)]
# Model (Main)
ckpt = torch.load(config.model.checkpoint, map_location=device)
model = FLAG(
ckpt['config'].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
vocab=vocab,
).to(device)
model.load_state_dict(ckpt['model'])
# my code goes here
sample_loader = DataLoader(test_set, batch_size=config.sample.batch_size,
shuffle=False, num_workers=config.sample.num_workers,
collate_fn=collate_mols)
with torch.no_grad():
model.eval()
number = 0
for batch in tqdm(sample_loader):
for key in batch:
batch[key] = batch[key].to(device)
gen_data, pos_list = ligand_gen(batch, model, vocab, config, center, device)
SetMolPos(gen_data, pos_list)
for mol in gen_data:
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
for _, mol in enumerate(gen_data):
number += 1
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
filename = os.path.join('./data', 'Ligand.sdf')
writer = Chem.SDWriter(filename)
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
return filename
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/sample.yml')
parser.add_argument('-i', '--data_id', type=int, default=0)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--outdir', type=str, default='./outputs')
parser.add_argument('--vocab_path', type=str, default='vocab.txt')
parser.add_argument('--num_workers', type=int, default=64)
args = parser.parse_args()
# Load vocab
vocab = []
for line in open(args.vocab_path):
p, _, _ = line.partition(':')
vocab.append(p)
vocab = Vocab(vocab)
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s-%d' % (config_name, args.data_id))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
# Data
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
masking = LigandMaskAll(vocab)
transform = Compose([
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
FeaturizeLigandBond(),
masking,
])
dataset, subsets = get_dataset(
config=config.dataset,
transform=transform,
)
testset = subsets['test']
data = testset[args.data_id]
center = data['ligand_center'].to(args.device)
test_set = [data for _ in range(config.sample.num_samples)]
with open(os.path.join(log_dir, 'pocket_info.txt'), 'a') as f:
f.write(data['protein_filename'] + '\n')
# Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.checkpoint, map_location=args.device)
model = FLAG(
ckpt['config'].model,
protein_atom_feature_dim=protein_featurizer.feature_dim,
ligand_atom_feature_dim=ligand_featurizer.feature_dim,
vocab=vocab,
).to(args.device)
model.load_state_dict(ckpt['model'])
# my code goes here
sample_loader = DataLoader(test_set, batch_size=config.sample.batch_size,
shuffle=False, num_workers=config.sample.num_workers,
collate_fn=collate_mols)
data_list = []
try:
with torch.no_grad():
model.eval()
number = 0
number_list = []
for batch in tqdm(sample_loader):
for key in batch:
batch[key] = batch[key].to(args.device)
gen_data, pos_list = ligand_gen(batch, model, vocab, config, center, args.device)
SetMolPos(gen_data, pos_list)
for mol in gen_data:
try:
AllChem.UFFOptimizeMolecule(mol)
except:
print('UFF error')
data_list.extend(gen_data)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for _, mol in enumerate(gen_data):
number+=1
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % number))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
number_list.append(number)
# Calculate metrics
print([Chem.MolToSmiles(mol) for mol in data_list])
smiles = [Chem.MolFromSmiles(Chem.MolToSmiles(mol)) for mol in data_list]
qed_list = [qed(mol) for mol in smiles if mol.GetNumAtoms() >= 8]
logp_list = [MolLogP(mol) for mol in smiles]
sa_list = [compute_sa_score(mol) for mol in smiles]
Lip_list = [lipinski(mol) for mol in smiles]
print('QED %.6f | LogP %.6f | SA %.6f | Lipinski %.6f \n' % (np.average(qed_list), np.average(logp_list), np.average(sa_list), np.average(Lip_list)))
except KeyboardInterrupt:
logger.info('Terminated. Generated molecules will be saved.')
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, mol in enumerate(data_list):
if mol.GetNumAtoms() < 12 or MolLogP(mol) < 0.60:
continue
smiles_f.write(Chem.MolToSmiles(mol) + '\n')
writer = Chem.SDWriter(os.path.join(log_dir, '%d.sdf' % i))
# writer.SetKekulize(False)
writer.write(mol, confId=0)
writer.close()
pool = mp.Pool(args.num_workers)
vina_list = []
pro_path = '/n/holyscratch01/mzitnik_lab/zaixizhang/pdbbind_pocket10/' + os.path.join(data['pdbid'], data['pdbid']+'_pocket.pdb')
for vina_score in tqdm(pool.imap_unordered(partial(calculate_vina, pro_path=pro_path, lig_path=log_dir), number_list), total=len(number_list)):
if vina_score != None:
vina_list.append(vina_score)
pool.close()
print('Vina: ', np.average(vina_list))
|