File size: 16,294 Bytes
10efe81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import sys
sys.path.append("..")
import torch
import torch.nn as nn
from torch.nn import Module, Linear, Embedding
from torch.nn import functional as F
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.data import Data, Batch
from copy import deepcopy
from .encoders import get_encoder, GNN_graphpred, MLP
from .common import *
from utils import dihedral_utils, chemutils
class FLAG(Module):
def __init__(self, config, protein_atom_feature_dim, ligand_atom_feature_dim, vocab):
super().__init__()
self.config = config
self.vocab = vocab
self.protein_atom_emb = Linear(protein_atom_feature_dim, config.hidden_channels)
self.ligand_atom_emb = Linear(ligand_atom_feature_dim, config.hidden_channels)
self.embedding = nn.Embedding(vocab.size() + 1, config.hidden_channels)
self.W = nn.Linear(2 * config.hidden_channels, config.hidden_channels)
self.W_o = nn.Linear(config.hidden_channels, self.vocab.size())
self.encoder = get_encoder(config.encoder)
self.comb_head = GNN_graphpred(num_layer=3, emb_dim=config.hidden_channels, num_tasks=1, JK='last',
drop_ratio=0.5, graph_pooling='mean', gnn_type='gin')
if config.random_alpha:
self.alpha_mlp = MLP(in_dim=config.hidden_channels * 4, out_dim=1, num_layers=2)
else:
self.alpha_mlp = MLP(in_dim=config.hidden_channels * 3, out_dim=1, num_layers=2)
self.focal_mlp_ligand = MLP(in_dim=config.hidden_channels, out_dim=1, num_layers=1)
self.focal_mlp_protein = MLP(in_dim=config.hidden_channels, out_dim=1, num_layers=1)
self.dist_mlp = MLP(in_dim=protein_atom_feature_dim + ligand_atom_feature_dim, out_dim=1, num_layers=2)
if config.refinement:
self.refine_protein = MLP(in_dim=config.hidden_channels * 2 + config.encoder.edge_channels, out_dim=1, num_layers=2)
self.refine_ligand = MLP(in_dim=config.hidden_channels * 2 + config.encoder.edge_channels, out_dim=1, num_layers=2)
self.smooth_cross_entropy = SmoothCrossEntropyLoss(reduction='mean', smoothing=0.1)
self.pred_loss = nn.CrossEntropyLoss()
self.comb_loss = nn.BCEWithLogitsLoss()
self.three_hop_loss = torch.nn.MSELoss()
self.focal_loss = nn.BCEWithLogitsLoss()
self.dist_loss = torch.nn.MSELoss(reduction='mean')
def forward(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, batch_protein, batch_ligand):
h_protein = self.protein_atom_emb(protein_atom_feature)
h_ligand = self.ligand_atom_emb(ligand_atom_feature)
h_ctx, pos_ctx, batch_ctx, protein_mask = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
pos_protein=protein_pos, pos_ligand=ligand_pos,
batch_protein=batch_protein,
batch_ligand=batch_ligand)
h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx) # (N_p+N_l, H)
focal_pred = torch.cat([self.focal_mlp_protein(h_ctx[protein_mask]), self.focal_mlp_ligand(h_ctx[~protein_mask])], dim=0)
return focal_pred, protein_mask, h_ctx
def forward_motif(self, h_ctx_focal, current_wid, current_atoms_batch, n_samples=1):
node_hiddens = scatter_add(h_ctx_focal, dim=0, index=current_atoms_batch)
motif_hiddens = self.embedding(current_wid)
pred_vecs = torch.cat([node_hiddens, motif_hiddens], dim=1)
pred_vecs = nn.ReLU()(self.W(pred_vecs))
pred_scores = self.W_o(pred_vecs)
pred_scores = F.softmax(pred_scores, dim=-1)
_, preds = torch.max(pred_scores, dim=1)
# random select n_samples in topk
k = 5*n_samples
select_pool = torch.topk(pred_scores, k, dim=1)[1]
index = torch.randint(k, (select_pool.shape[0], n_samples))
preds = torch.cat([select_pool[i][index[i]] for i in range(len(index))])
idx_parent = torch.repeat_interleave(torch.arange(pred_scores.shape[0]), n_samples, dim=0).to(pred_scores.device)
prob = pred_scores[idx_parent, preds]
return preds, prob
def forward_attach(self, mol_list, next_motif_smiles, device):
cand_mols, cand_batch, new_atoms, one_atom_attach, intersection, attach_fail = chemutils.assemble(mol_list, next_motif_smiles)
graph_data = Batch.from_data_list([chemutils.mol_to_graph_data_obj_simple(mol) for mol in cand_mols]).to(device)
comb_pred = self.comb_head(graph_data.x, graph_data.edge_index, graph_data.edge_attr, graph_data.batch).reshape(-1)
slice_idx = torch.cat([torch.tensor([0]), torch.cumsum(cand_batch.bincount(), dim=0)], dim=0)
select = [(torch.argmax(comb_pred[slice_idx[i]:slice_idx[i + 1]]) + slice_idx[i]).item() for i in
range(len(slice_idx) - 1)]
'''
select = []
for k in range(len(slice_idx) - 1):
id = torch.multinomial(torch.exp(comb_pred[slice_idx[k]:slice_idx[k + 1]]).reshape(-1).float(), 1)
select.append((id+slice_idx[k]).item())'''
select_mols = [cand_mols[i] for i in select]
new_atoms = [new_atoms[i] for i in select]
one_atom_attach = [one_atom_attach[i] for i in select]
intersection = [intersection[i] for i in select]
return select_mols, new_atoms, one_atom_attach, intersection, attach_fail
def forward_alpha(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, batch_protein,
batch_ligand, xy_index, rotatable):
# encode again
h_protein = self.protein_atom_emb(protein_atom_feature)
h_ligand = self.ligand_atom_emb(ligand_atom_feature)
h_ctx, pos_ctx, batch_ctx, protein_mask = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
pos_protein=protein_pos, pos_ligand=ligand_pos,
batch_protein=batch_protein,
batch_ligand=batch_ligand)
h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx) # (N_p+N_l, H)
h_ctx_ligand = h_ctx[~protein_mask]
hx, hy = h_ctx_ligand[xy_index[:, 0]], h_ctx_ligand[xy_index[:, 1]]
h_mol = scatter_add(h_ctx_ligand, dim=0, index=batch_ligand)
h_mol = h_mol[rotatable]
if self.config.random_alpha:
rand_dist = torch.distributions.normal.Normal(loc=0, scale=1)
rand_alpha = rand_dist.sample(hx.shape).to(hx.device)
alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol, rand_alpha], dim=-1))
else:
alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol], dim=-1))
return alpha
def get_loss(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, ligand_pos_torsion,
ligand_atom_feature_torsion, batch_protein, batch_ligand, batch_ligand_torsion, batch):
self.device = protein_pos.device
h_protein = self.protein_atom_emb(protein_atom_feature)
h_ligand = self.ligand_atom_emb(ligand_atom_feature)
loss_list = [0, 0, 0, 0, 0, 0]
# Encode for motif prediction
h_ctx, pos_ctx, batch_ctx, mask_protein = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
pos_protein=protein_pos, pos_ligand=ligand_pos,
batch_protein=batch_protein,
batch_ligand=batch_ligand)
h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx) # (N_p+N_l, H)
h_ctx_ligand = h_ctx[~mask_protein]
h_ctx_protein = h_ctx[mask_protein]
h_ctx_focal = h_ctx[batch['current_atoms']]
# Encode for torsion prediction
if len(batch['y_pos']) > 0:
h_ligand_torsion = self.ligand_atom_emb(ligand_atom_feature_torsion)
h_ctx_torison, pos_ctx_torison, batch_ctx_torsion, mask_protein = compose_context_stable(h_protein=h_protein,
h_ligand=h_ligand_torsion,
pos_protein=protein_pos,
pos_ligand=ligand_pos_torsion,
batch_protein=batch_protein,
batch_ligand=batch_ligand_torsion)
h_ctx_torsion = self.encoder(node_attr=h_ctx_torison, pos=pos_ctx_torison, batch=batch_ctx_torsion) # (N_p+N_l, H)
h_ctx_ligand_torsion = h_ctx_torsion[~mask_protein]
# next motif prediction
node_hiddens = scatter_add(h_ctx_focal, dim=0, index=batch['current_atoms_batch'])
motif_hiddens = self.embedding(batch['current_wid'])
pred_vecs = torch.cat([node_hiddens, motif_hiddens], dim=1)
pred_vecs = nn.ReLU()(self.W(pred_vecs))
pred_scores = self.W_o(pred_vecs)
pred_loss = self.pred_loss(pred_scores, batch['next_wid'])
loss_list[0] = pred_loss.item()
# attachment prediction
if len(batch['cand_labels']) > 0:
cand_mols = batch['cand_mols']
comb_pred = self.comb_head(cand_mols.x, cand_mols.edge_index, cand_mols.edge_attr, cand_mols.batch)
comb_loss = self.comb_loss(comb_pred, batch['cand_labels'].view(comb_pred.shape).float())
loss_list[1] = comb_loss.item()
else:
comb_loss = 0
# focal prediction
focal_ligand_pred, focal_protein_pred = self.focal_mlp_ligand(h_ctx_ligand), self.focal_mlp_protein(h_ctx_protein)
focal_loss = self.focal_loss(focal_ligand_pred.reshape(-1), batch['ligand_frontier'].float()) +\
self.focal_loss(focal_protein_pred.reshape(-1), batch['protein_contact'].float())
loss_list[2] = focal_loss.item()
# distance matrix prediction
if len(batch['true_dm']) > 0:
input = torch.cat([protein_atom_feature[batch['dm_protein_idx']], ligand_atom_feature[batch['dm_ligand_idx']]], dim=-1)
pred_dist = self.dist_mlp(input)
dm_target = batch['true_dm'].unsqueeze(-1)
dm_loss = self.dist_loss(pred_dist, dm_target)
loss_list[3] = dm_loss.item()
else:
dm_loss = 0
# structure refinement loss
if self.config.refinement and len(batch['true_dm']) > 0:
true_distance_alpha = torch.norm(batch['ligand_context_pos'][batch['sr_ligand_idx']] - batch['protein_pos'][batch['sr_protein_idx']], dim=1)
true_distance_intra = torch.norm(batch['ligand_context_pos'][batch['sr_ligand_idx0']] - batch['ligand_context_pos'][batch['sr_ligand_idx1']], dim=1)
input_distance_alpha = ligand_pos[batch['sr_ligand_idx']] - protein_pos[batch['sr_protein_idx']]
input_distance_intra = ligand_pos[batch['sr_ligand_idx0']] - ligand_pos[batch['sr_ligand_idx1']]
distance_emb1 = self.encoder.distance_expansion(torch.norm(input_distance_alpha, dim=1))
distance_emb2 = self.encoder.distance_expansion(torch.norm(input_distance_intra, dim=1))
input1 = torch.cat([h_ctx_ligand[batch['sr_ligand_idx']], h_ctx_protein[batch['sr_protein_idx']], distance_emb1], dim=-1)[true_distance_alpha<=10.0]
input2 = torch.cat([h_ctx_ligand[batch['sr_ligand_idx0']], h_ctx_ligand[batch['sr_ligand_idx1']], distance_emb2], dim=-1)[true_distance_intra<=10.0]
#distance cut_off
norm_dir1 = F.normalize(input_distance_alpha, p=2, dim=1)[true_distance_alpha<=10.0]
norm_dir2 = F.normalize(input_distance_intra, p=2, dim=1)[true_distance_intra<=10.0]
force1 = scatter_mean(self.refine_protein(input1)*norm_dir1, dim=0, index=batch['sr_ligand_idx'][true_distance_alpha<=10.0], dim_size=ligand_pos.size(0))
force2 = scatter_mean(self.refine_ligand(input2)*norm_dir2, dim=0, index=batch['sr_ligand_idx0'][true_distance_intra<=10.0], dim_size=ligand_pos.size(0))
new_ligand_pos = deepcopy(ligand_pos)
new_ligand_pos += force1
new_ligand_pos += force2
refine_dist1 = torch.norm(new_ligand_pos[batch['sr_ligand_idx']] - protein_pos[batch['sr_protein_idx']], dim=1)
refine_dist2 = torch.norm(new_ligand_pos[batch['sr_ligand_idx0']] - new_ligand_pos[batch['sr_ligand_idx1']], dim=1)
sr_loss = (self.dist_loss(refine_dist1, true_distance_alpha) + self.dist_loss(refine_dist2, true_distance_intra))
loss_list[5] = sr_loss.item()
else:
sr_loss = 0
# torsion prediction
if len(batch['y_pos']) > 0:
Hx = dihedral_utils.rotation_matrix_v2(batch['y_pos'])
xn_pos = torch.matmul(Hx, batch['xn_pos'].permute(0, 2, 1)).permute(0, 2, 1)
yn_pos = torch.matmul(Hx, batch['yn_pos'].permute(0, 2, 1)).permute(0, 2, 1)
y_pos = torch.matmul(Hx, batch['y_pos'].unsqueeze(1).permute(0, 2, 1)).squeeze(-1)
hx, hy = h_ctx_ligand_torsion[batch['ligand_torsion_xy_index'][:, 0]], h_ctx_ligand_torsion[batch['ligand_torsion_xy_index'][:, 1]]
h_mol = scatter_add(h_ctx_ligand_torsion, dim=0, index=batch['ligand_element_torsion_batch'])
if self.config.random_alpha:
rand_dist = torch.distributions.normal.Normal(loc=0, scale=1)
rand_alpha = rand_dist.sample(hx.shape).to(self.device)
alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol, rand_alpha], dim=-1))
else:
alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol], dim=-1))
# rotate xn
R_alpha = self.build_alpha_rotation(torch.sin(alpha).squeeze(-1), torch.cos(alpha).squeeze(-1))
xn_pos = torch.matmul(R_alpha, xn_pos.permute(0, 2, 1)).permute(0, 2, 1)
p_idx, q_idx = torch.cartesian_prod(torch.arange(3), torch.arange(3)).chunk(2, dim=-1)
p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
pred_sin, pred_cos = dihedral_utils.batch_dihedrals(xn_pos[:, p_idx],
torch.zeros_like(y_pos).unsqueeze(1).repeat(1, 9, 1),
y_pos.unsqueeze(1).repeat(1, 9, 1),
yn_pos[:, q_idx])
dihedral_loss = torch.mean(dihedral_utils.von_Mises_loss(batch['true_cos'], pred_cos.reshape(-1), batch['true_sin'], pred_cos.reshape(-1))[batch['dihedral_mask']])
torsion_loss = -dihedral_loss
loss_list[4] = torsion_loss.item()
else:
torsion_loss = 0
# dm: distance matrix
loss = pred_loss + comb_loss + focal_loss + dm_loss + torsion_loss + sr_loss
return loss, loss_list
def build_alpha_rotation(self, alpha, alpha_cos=None):
"""
Builds the alpha rotation matrix
:param alpha: predicted values of torsion parameter alpha (n_dihedral_pairs)
:return: alpha rotation matrix (n_dihedral_pairs, 3, 3)
"""
H_alpha = torch.FloatTensor([[[1, 0, 0], [0, 0, 0], [0, 0, 0]]]).repeat(alpha.shape[0], 1, 1).to(self.device)
if torch.is_tensor(alpha_cos):
H_alpha[:, 1, 1] = alpha_cos
H_alpha[:, 1, 2] = -alpha
H_alpha[:, 2, 1] = alpha
H_alpha[:, 2, 2] = alpha_cos
else:
H_alpha[:, 1, 1] = torch.cos(alpha)
H_alpha[:, 1, 2] = -torch.sin(alpha)
H_alpha[:, 2, 1] = torch.sin(alpha)
H_alpha[:, 2, 2] = torch.cos(alpha)
return H_alpha
|