File size: 16,294 Bytes
10efe81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import sys
sys.path.append("..")
import torch
import torch.nn as nn
from torch.nn import Module, Linear, Embedding
from torch.nn import functional as F
from torch_scatter import scatter_add, scatter_mean
from torch_geometric.data import Data, Batch
from copy import deepcopy

from .encoders import get_encoder, GNN_graphpred, MLP
from .common import *
from utils import dihedral_utils, chemutils


class FLAG(Module):

    def __init__(self, config, protein_atom_feature_dim, ligand_atom_feature_dim, vocab):
        super().__init__()
        self.config = config
        self.vocab = vocab
        self.protein_atom_emb = Linear(protein_atom_feature_dim, config.hidden_channels)
        self.ligand_atom_emb = Linear(ligand_atom_feature_dim, config.hidden_channels)
        self.embedding = nn.Embedding(vocab.size() + 1, config.hidden_channels)
        self.W = nn.Linear(2 * config.hidden_channels, config.hidden_channels)
        self.W_o = nn.Linear(config.hidden_channels, self.vocab.size())
        self.encoder = get_encoder(config.encoder)
        self.comb_head = GNN_graphpred(num_layer=3, emb_dim=config.hidden_channels, num_tasks=1, JK='last',
                                       drop_ratio=0.5, graph_pooling='mean', gnn_type='gin')
        if config.random_alpha:
            self.alpha_mlp = MLP(in_dim=config.hidden_channels * 4, out_dim=1, num_layers=2)
        else:
            self.alpha_mlp = MLP(in_dim=config.hidden_channels * 3, out_dim=1, num_layers=2)
        self.focal_mlp_ligand = MLP(in_dim=config.hidden_channels, out_dim=1, num_layers=1)
        self.focal_mlp_protein = MLP(in_dim=config.hidden_channels, out_dim=1, num_layers=1)
        self.dist_mlp = MLP(in_dim=protein_atom_feature_dim + ligand_atom_feature_dim, out_dim=1, num_layers=2)
        if config.refinement:
            self.refine_protein = MLP(in_dim=config.hidden_channels * 2 + config.encoder.edge_channels, out_dim=1, num_layers=2)
            self.refine_ligand = MLP(in_dim=config.hidden_channels * 2 + config.encoder.edge_channels, out_dim=1, num_layers=2)

        self.smooth_cross_entropy = SmoothCrossEntropyLoss(reduction='mean', smoothing=0.1)
        self.pred_loss = nn.CrossEntropyLoss()
        self.comb_loss = nn.BCEWithLogitsLoss()
        self.three_hop_loss = torch.nn.MSELoss()
        self.focal_loss = nn.BCEWithLogitsLoss()
        self.dist_loss = torch.nn.MSELoss(reduction='mean')

    def forward(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, batch_protein, batch_ligand):
        h_protein = self.protein_atom_emb(protein_atom_feature)
        h_ligand = self.ligand_atom_emb(ligand_atom_feature)

        h_ctx, pos_ctx, batch_ctx, protein_mask = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
                                                                         pos_protein=protein_pos, pos_ligand=ligand_pos,
                                                                         batch_protein=batch_protein,
                                                                         batch_ligand=batch_ligand)
        h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx)  # (N_p+N_l, H)
        focal_pred = torch.cat([self.focal_mlp_protein(h_ctx[protein_mask]), self.focal_mlp_ligand(h_ctx[~protein_mask])], dim=0)

        return focal_pred, protein_mask, h_ctx

    def forward_motif(self, h_ctx_focal, current_wid, current_atoms_batch, n_samples=1):
        node_hiddens = scatter_add(h_ctx_focal, dim=0, index=current_atoms_batch)
        motif_hiddens = self.embedding(current_wid)
        pred_vecs = torch.cat([node_hiddens, motif_hiddens], dim=1)
        pred_vecs = nn.ReLU()(self.W(pred_vecs))
        pred_scores = self.W_o(pred_vecs)
        pred_scores = F.softmax(pred_scores, dim=-1)
        _, preds = torch.max(pred_scores, dim=1)
        # random select n_samples in topk
        k = 5*n_samples
        select_pool = torch.topk(pred_scores, k, dim=1)[1]
        index = torch.randint(k, (select_pool.shape[0], n_samples))
        preds = torch.cat([select_pool[i][index[i]] for i in range(len(index))])

        idx_parent = torch.repeat_interleave(torch.arange(pred_scores.shape[0]), n_samples, dim=0).to(pred_scores.device)
        prob = pred_scores[idx_parent, preds]
        return preds, prob

    def forward_attach(self, mol_list, next_motif_smiles, device):
        cand_mols, cand_batch, new_atoms, one_atom_attach, intersection, attach_fail = chemutils.assemble(mol_list, next_motif_smiles)
        graph_data = Batch.from_data_list([chemutils.mol_to_graph_data_obj_simple(mol) for mol in cand_mols]).to(device)
        comb_pred = self.comb_head(graph_data.x, graph_data.edge_index, graph_data.edge_attr, graph_data.batch).reshape(-1)
        slice_idx = torch.cat([torch.tensor([0]), torch.cumsum(cand_batch.bincount(), dim=0)], dim=0)
        select = [(torch.argmax(comb_pred[slice_idx[i]:slice_idx[i + 1]]) + slice_idx[i]).item() for i in
                  range(len(slice_idx) - 1)]
        '''
        select = []
        for k in range(len(slice_idx) - 1):
            id = torch.multinomial(torch.exp(comb_pred[slice_idx[k]:slice_idx[k + 1]]).reshape(-1).float(), 1)
            select.append((id+slice_idx[k]).item())'''

        select_mols = [cand_mols[i] for i in select]
        new_atoms = [new_atoms[i] for i in select]
        one_atom_attach = [one_atom_attach[i] for i in select]
        intersection = [intersection[i] for i in select]
        return select_mols, new_atoms, one_atom_attach, intersection, attach_fail

    def forward_alpha(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, batch_protein,
                     batch_ligand, xy_index, rotatable):
        # encode again
        h_protein = self.protein_atom_emb(protein_atom_feature)
        h_ligand = self.ligand_atom_emb(ligand_atom_feature)

        h_ctx, pos_ctx, batch_ctx, protein_mask = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
                                                                         pos_protein=protein_pos, pos_ligand=ligand_pos,
                                                                         batch_protein=batch_protein,
                                                                         batch_ligand=batch_ligand)
        h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx)  # (N_p+N_l, H)
        h_ctx_ligand = h_ctx[~protein_mask]
        hx, hy = h_ctx_ligand[xy_index[:, 0]], h_ctx_ligand[xy_index[:, 1]]
        h_mol = scatter_add(h_ctx_ligand, dim=0, index=batch_ligand)
        h_mol = h_mol[rotatable]
        if self.config.random_alpha:
            rand_dist = torch.distributions.normal.Normal(loc=0, scale=1)
            rand_alpha = rand_dist.sample(hx.shape).to(hx.device)
            alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol, rand_alpha], dim=-1))
        else:
            alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol], dim=-1))
        return alpha

    def get_loss(self, protein_pos, protein_atom_feature, ligand_pos, ligand_atom_feature, ligand_pos_torsion,
                 ligand_atom_feature_torsion, batch_protein, batch_ligand, batch_ligand_torsion, batch):
        self.device = protein_pos.device
        h_protein = self.protein_atom_emb(protein_atom_feature)
        h_ligand = self.ligand_atom_emb(ligand_atom_feature)

        loss_list = [0, 0, 0, 0, 0, 0]

        # Encode for motif prediction
        h_ctx, pos_ctx, batch_ctx, mask_protein = compose_context_stable(h_protein=h_protein, h_ligand=h_ligand,
                                                                         pos_protein=protein_pos, pos_ligand=ligand_pos,
                                                                         batch_protein=batch_protein,
                                                                         batch_ligand=batch_ligand)
        h_ctx = self.encoder(node_attr=h_ctx, pos=pos_ctx, batch=batch_ctx)  # (N_p+N_l, H)
        h_ctx_ligand = h_ctx[~mask_protein]
        h_ctx_protein = h_ctx[mask_protein]
        h_ctx_focal = h_ctx[batch['current_atoms']]

        # Encode for torsion prediction
        if len(batch['y_pos']) > 0:
            h_ligand_torsion = self.ligand_atom_emb(ligand_atom_feature_torsion)
            h_ctx_torison, pos_ctx_torison, batch_ctx_torsion, mask_protein = compose_context_stable(h_protein=h_protein,
                                                                                                     h_ligand=h_ligand_torsion,
                                                                                                     pos_protein=protein_pos,
                                                                                                     pos_ligand=ligand_pos_torsion,
                                                                                                     batch_protein=batch_protein,
                                                                                                     batch_ligand=batch_ligand_torsion)
            h_ctx_torsion = self.encoder(node_attr=h_ctx_torison, pos=pos_ctx_torison, batch=batch_ctx_torsion)  # (N_p+N_l, H)
            h_ctx_ligand_torsion = h_ctx_torsion[~mask_protein]

        # next motif prediction

        node_hiddens = scatter_add(h_ctx_focal, dim=0, index=batch['current_atoms_batch'])
        motif_hiddens = self.embedding(batch['current_wid'])
        pred_vecs = torch.cat([node_hiddens, motif_hiddens], dim=1)
        pred_vecs = nn.ReLU()(self.W(pred_vecs))
        pred_scores = self.W_o(pred_vecs)
        pred_loss = self.pred_loss(pred_scores, batch['next_wid'])
        loss_list[0] = pred_loss.item()

        # attachment prediction
        if len(batch['cand_labels']) > 0:
            cand_mols = batch['cand_mols']
            comb_pred = self.comb_head(cand_mols.x, cand_mols.edge_index, cand_mols.edge_attr, cand_mols.batch)
            comb_loss = self.comb_loss(comb_pred, batch['cand_labels'].view(comb_pred.shape).float())
            loss_list[1] = comb_loss.item()
        else:
            comb_loss = 0

        # focal prediction
        focal_ligand_pred, focal_protein_pred = self.focal_mlp_ligand(h_ctx_ligand), self.focal_mlp_protein(h_ctx_protein)
        focal_loss = self.focal_loss(focal_ligand_pred.reshape(-1), batch['ligand_frontier'].float()) +\
                     self.focal_loss(focal_protein_pred.reshape(-1), batch['protein_contact'].float())
        loss_list[2] = focal_loss.item()

        # distance matrix prediction
        if len(batch['true_dm']) > 0:
            input = torch.cat([protein_atom_feature[batch['dm_protein_idx']], ligand_atom_feature[batch['dm_ligand_idx']]], dim=-1)
            pred_dist = self.dist_mlp(input)
            dm_target = batch['true_dm'].unsqueeze(-1)
            dm_loss = self.dist_loss(pred_dist, dm_target)
            loss_list[3] = dm_loss.item()
        else:
            dm_loss = 0

        # structure refinement loss
        if self.config.refinement and len(batch['true_dm']) > 0:
            true_distance_alpha = torch.norm(batch['ligand_context_pos'][batch['sr_ligand_idx']] - batch['protein_pos'][batch['sr_protein_idx']], dim=1)
            true_distance_intra = torch.norm(batch['ligand_context_pos'][batch['sr_ligand_idx0']] - batch['ligand_context_pos'][batch['sr_ligand_idx1']], dim=1)
            input_distance_alpha = ligand_pos[batch['sr_ligand_idx']] - protein_pos[batch['sr_protein_idx']]
            input_distance_intra = ligand_pos[batch['sr_ligand_idx0']] - ligand_pos[batch['sr_ligand_idx1']]
            distance_emb1 = self.encoder.distance_expansion(torch.norm(input_distance_alpha, dim=1))
            distance_emb2 = self.encoder.distance_expansion(torch.norm(input_distance_intra, dim=1))
            input1 = torch.cat([h_ctx_ligand[batch['sr_ligand_idx']], h_ctx_protein[batch['sr_protein_idx']], distance_emb1], dim=-1)[true_distance_alpha<=10.0]
            input2 = torch.cat([h_ctx_ligand[batch['sr_ligand_idx0']], h_ctx_ligand[batch['sr_ligand_idx1']], distance_emb2], dim=-1)[true_distance_intra<=10.0]
            #distance cut_off
            norm_dir1 = F.normalize(input_distance_alpha, p=2, dim=1)[true_distance_alpha<=10.0]
            norm_dir2 = F.normalize(input_distance_intra, p=2, dim=1)[true_distance_intra<=10.0]
            force1 = scatter_mean(self.refine_protein(input1)*norm_dir1, dim=0, index=batch['sr_ligand_idx'][true_distance_alpha<=10.0], dim_size=ligand_pos.size(0))
            force2 = scatter_mean(self.refine_ligand(input2)*norm_dir2, dim=0, index=batch['sr_ligand_idx0'][true_distance_intra<=10.0], dim_size=ligand_pos.size(0))
            new_ligand_pos = deepcopy(ligand_pos)
            new_ligand_pos += force1
            new_ligand_pos += force2
            refine_dist1 = torch.norm(new_ligand_pos[batch['sr_ligand_idx']] - protein_pos[batch['sr_protein_idx']], dim=1)
            refine_dist2 = torch.norm(new_ligand_pos[batch['sr_ligand_idx0']] - new_ligand_pos[batch['sr_ligand_idx1']], dim=1)
            sr_loss = (self.dist_loss(refine_dist1, true_distance_alpha) + self.dist_loss(refine_dist2, true_distance_intra))
            loss_list[5] = sr_loss.item()
        else:
            sr_loss = 0

        # torsion prediction
        if len(batch['y_pos']) > 0:
            Hx = dihedral_utils.rotation_matrix_v2(batch['y_pos'])
            xn_pos = torch.matmul(Hx, batch['xn_pos'].permute(0, 2, 1)).permute(0, 2, 1)
            yn_pos = torch.matmul(Hx, batch['yn_pos'].permute(0, 2, 1)).permute(0, 2, 1)
            y_pos = torch.matmul(Hx, batch['y_pos'].unsqueeze(1).permute(0, 2, 1)).squeeze(-1)

            hx, hy = h_ctx_ligand_torsion[batch['ligand_torsion_xy_index'][:, 0]], h_ctx_ligand_torsion[batch['ligand_torsion_xy_index'][:, 1]]
            h_mol = scatter_add(h_ctx_ligand_torsion, dim=0, index=batch['ligand_element_torsion_batch'])
            if self.config.random_alpha:
                rand_dist = torch.distributions.normal.Normal(loc=0, scale=1)
                rand_alpha = rand_dist.sample(hx.shape).to(self.device)
                alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol, rand_alpha], dim=-1))
            else:
                alpha = self.alpha_mlp(torch.cat([hx, hy, h_mol], dim=-1))
            # rotate xn
            R_alpha = self.build_alpha_rotation(torch.sin(alpha).squeeze(-1), torch.cos(alpha).squeeze(-1))
            xn_pos = torch.matmul(R_alpha, xn_pos.permute(0, 2, 1)).permute(0, 2, 1)

            p_idx, q_idx = torch.cartesian_prod(torch.arange(3), torch.arange(3)).chunk(2, dim=-1)
            p_idx, q_idx = p_idx.squeeze(-1), q_idx.squeeze(-1)
            pred_sin, pred_cos = dihedral_utils.batch_dihedrals(xn_pos[:, p_idx],
                                                 torch.zeros_like(y_pos).unsqueeze(1).repeat(1, 9, 1),
                                                 y_pos.unsqueeze(1).repeat(1, 9, 1),
                                                 yn_pos[:, q_idx])
            dihedral_loss = torch.mean(dihedral_utils.von_Mises_loss(batch['true_cos'], pred_cos.reshape(-1), batch['true_sin'], pred_cos.reshape(-1))[batch['dihedral_mask']])
            torsion_loss = -dihedral_loss
            loss_list[4] = torsion_loss.item()
        else:
            torsion_loss = 0

        # dm: distance matrix
        loss = pred_loss + comb_loss + focal_loss + dm_loss + torsion_loss + sr_loss

        return loss, loss_list

    def build_alpha_rotation(self, alpha, alpha_cos=None):
        """
        Builds the alpha rotation matrix

        :param alpha: predicted values of torsion parameter alpha (n_dihedral_pairs)
        :return: alpha rotation matrix (n_dihedral_pairs, 3, 3)
        """
        H_alpha = torch.FloatTensor([[[1, 0, 0], [0, 0, 0], [0, 0, 0]]]).repeat(alpha.shape[0], 1, 1).to(self.device)

        if torch.is_tensor(alpha_cos):
            H_alpha[:, 1, 1] = alpha_cos
            H_alpha[:, 1, 2] = -alpha
            H_alpha[:, 2, 1] = alpha
            H_alpha[:, 2, 2] = alpha_cos
        else:
            H_alpha[:, 1, 1] = torch.cos(alpha)
            H_alpha[:, 1, 2] = -torch.sin(alpha)
            H_alpha[:, 2, 1] = torch.sin(alpha)
            H_alpha[:, 2, 2] = torch.cos(alpha)

        return H_alpha