File size: 3,487 Bytes
9b5b26a
 
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
5df72d6
9b5b26a
11cfd12
de27d6b
6139287
9b5b26a
11cfd12
 
 
9b5b26a
00fc27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd625d
74266d3
 
 
 
 
4656d2c
365b38a
f7a06cc
de27d6b
74266d3
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
85ba092
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
11cfd12
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
11bccc3
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_weather(city:str,lat: float, lng:float)-> str: 
    """A tool that returns the weather of a city given its lattitude and longitude. The returned string include readings for
        temperature, wind speed and weather code e.g., 'clear sky','Partly Cloudy' etc
    Args:
        city: city name
        lat: city lattitude
        lng: city longitude
    """
    # Map weather codes to descriptions
    weather_descriptions = {
        0: "Clear sky",
        1: "Mainly clear",
        2: "Partly cloudy",
        3: "Overcast",
        45: "Foggy",
        48: "Depositing rime fog",
        51: "Light drizzle",
        53: "Moderate drizzle",
        55: "Dense drizzle",
        61: "Slight rain",
        63: "Moderate rain",
        65: "Heavy rain",
        80: "Light rain showers",
        81: "Moderate rain showers",
        82: "Heavy rain showers",
        95: "Thunderstorm",
    }
    url = f"https://api.open-meteo.com/v1/forecast?latitude={lat}&longitude={lng}&current_weather=true"
    
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        weather = data["current_weather"]
        weather_units = data["current_weather_units"]
        description = weather_descriptions[weather['weathercode']]
        windspeed  = f"{weather['windspeed']} {weather_units['windspeed']}"
        return f"The weather in {city} is {weather['temperature']}°C - {description} - {windspeed}."
    else:
        return "Error fetching weather data."

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
search_tool = DuckDuckGoSearchTool()

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, get_current_time_in_timezone, search_tool, get_weather], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)



GradioUI(agent).launch()