File size: 8,912 Bytes
e1b7609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# -*- coding: utf-8 -*-
"""chatbot_with_memory (1).ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1sIEqI5-wciuiYOdlEYwBkTPUIlvMEzkF
"""

!pip install chromadb==0.4.6
!pip install pydantic==1.10
!pip install sentence-transformers

!pip install huggingface_hub

!pip install transformers

from langchain.document_loaders import TextLoader  #for textfiles
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.document_loaders import UnstructuredPDFLoader  #load pdf
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredURLLoader  #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
import os
huggingfacehub_api_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")


pip install pypdf

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

#import csvfrom langchain.document_loaders import PyPDFLoader
# Load the PDF file from current working directory
loader = PyPDFLoader("/content/Document sans titre (5).pdf")
# Split the PDF into Pages
pages = loader.load_and_split()

#import from langchain.text_splitter import RecursiveCharacterTextSplitter
# Define chunk size, overlap and separators
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size= 128,
    chunk_overlap=64,
    separators=['\n\n', '\n', '(?=>\. )', ' ', '']
)
docs  = text_splitter.split_documents(pages)

from langchain.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings()

pip install faiss-gpu

#Create the vectorized db
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
from langchain.vectorstores import FAISS
db = FAISS.from_documents(docs, embeddings)

llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000, "max_new_tokens": 500})
chain = load_qa_chain(llm, chain_type="stuff")

#QUERYING
query = "quelles sont les villes les facultees de medcine  ?"
docs = db.similarity_search(query)
chain.run(input_documents=docs, question=query)

from langchain.chains import RetrievalQA
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}))

query = "donner moi plus  des information sur les facultees de medcine?"
qa.run(query)

query = "What is the meaning of Descriptive Data Analysis?"
qa.run(query)#import csv

repo_id = 'google/flan-t5-xxl'  # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
llm = HuggingFaceHub(huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
                     repo_id=repo_id,
                     model_kwargs={'temperature':0.5, 'max_length':256})

query1 = "Bonjour, je suis zaynab ,j'ai des questions a vous "
query2 = "j'habite a marrakech. tu sait son pays?"
query3 = "quel est mon prenom?"
query4 = "ou j'habite"

pip install langchain --upgrade

from langchain import HuggingFaceHub
from langchain.chains import ConversationChain

"""### Conversation Buffer memory"""

from langchain.chains.conversation.memory import ConversationBufferMemory
 # Adjust the import path accordingly
memory = ConversationBufferMemory()
conversation_buf = ConversationChain(
    llm=llm,
    memory=memory)

print("input: ",query1)
conversation_buf.predict(input=query1)

print("input: ",query2)
conversation_buf.predict(input=query2)

memory.load_memory_variables({})

print("input: ",query3)
conversation_buf.predict(input=query3)

print("input: ",query4)
conversation_buf.predict(input=query4)

print(memory.buffer)

"""### Conversation Buffer Window Memory"""

from langchain.memory import ConversationBufferWindowMemory

memory2 = ConversationBufferWindowMemory(k=2)
conversation_buf2 = ConversationChain(
    llm=llm,
    memory=memory2
)

print("input: ",query1)
conversation_buf2.predict(input=query1)

print("input: ",query2)
conversation_buf2.predict(input=query2)

print("input: ",query3)
conversation_buf2.predict(input=query3)

print(memory2.buffer)

"""### Conversation Summary Memory"""

from langchain.memory import ConversationSummaryBufferMemory

memory3 = ConversationSummaryBufferMemory(llm=llm, max_token_limit=80)
conversation_buf3 = ConversationChain(
    llm=llm,
    memory=memory3
)

print("input: ",query1)
conversation_buf3.predict(input=query1)

print("input: ",query2)
conversation_buf3.predict(input=query2)

print("input: ",query3)
conversation_buf3.predict(input=query3)

memory3.load_memory_variables({})

"""### Chat PDF with Memory

Updated version of Pydantic package (dependency of chromadb) has changed leaving chromadb, incompatible: here are the possible solutions: [import error chromadb](https://github.com/langchain-ai/langchain/issues/1957)  || Install specific versions of chromadb and pydantic while the bug is resolved

![image.png](
"""

!pip install pypdf

import langchain
import chromadb

import os
import getpass

from langchain.document_loaders import PyPDFLoader  #document loader: https://python.langchain.com/docs/modules/data_connection/document_loaders
from langchain.text_splitter import RecursiveCharacterTextSplitter  #document transformer: text splitter for chunking
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import PromptTemplate
from langchain.vectorstores import Chroma #vector store
from langchain import HuggingFaceHub  #model hub
from langchain.chains import RetrievalQA

from langchain.memory import ConversationBufferMemory

#loading the API key
import getpass
import os
os.environ['HUGGING_FACE_HUB_API_KEY'] = getpass.getpass('Hugging face api key:')

path = input("Enter PDF file path: ")#"C:/Users/Sourav/Downloads/pdf"
loader = PyPDFLoader(path)
pages = loader.load()

#number of pages
len(pages)

splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=10)
docs = splitter.split_documents(pages)

tokens = docs
num_tokens = len(tokens)
print("Nombre de jetons :", num_tokens)

for token in tokens:
    print(token)

embeddings = HuggingFaceEmbeddings()
doc_search = Chroma.from_documents(docs, embeddings)

print(doc_search)

query = "Quelle sont les Facultees existent ?"
similar_docs = doc_search.similarity_search(query, k=3)

print(similar_docs)

query = "donner moi des information ecole nationale d'Industrie Minérale ?"
similar_docs = doc_search.similarity_search(query, k=10)

repo_id = 'google/flan-t5-xxl'  # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
llm = HuggingFaceHub(huggingfacehub_api_token=os.environ['HUGGING_FACE_HUB_API_KEY'],
                     repo_id=repo_id,
                     model_kwargs={'temperature':1, 'max_length':10000000000, "max_tokens":1000000000})

template = """
Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question:
------
<ctx>
{context}
</ctx>
------
<hs>
{history}
</hs>
------
{question}
Answer:
"""
prompt = PromptTemplate(
    input_variables=["history", "context", "question"],
    template=template,
)

memory = ConversationBufferMemory(
    memory_key="history",
    input_key="question"
)

retrieval_chain = RetrievalQA.from_chain_type(llm,
                                              chain_type='stuff',
                                              retriever=doc_search.as_retriever(),
                                              chain_type_kwargs={
                                                  "prompt": prompt,
                                                  "memory": memory
                                              })

query = " donner moi les villes de ces facultees de medcine? "
retrieval_chain.run(query)

query = "donner moi des information sur  Facultees de medcine  ?"
retrieval_chain.run(query)

memory.load_memory_variables({})