File size: 8,912 Bytes
e1b7609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# -*- coding: utf-8 -*-
"""chatbot_with_memory (1).ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1sIEqI5-wciuiYOdlEYwBkTPUIlvMEzkF
"""
!pip install chromadb==0.4.6
!pip install pydantic==1.10
!pip install sentence-transformers
!pip install huggingface_hub
!pip install transformers
from langchain.document_loaders import TextLoader #for textfiles
from langchain.text_splitter import CharacterTextSplitter #text splitter
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
from langchain.chains.question_answering import load_qa_chain
from langchain import HuggingFaceHub
import os
huggingfacehub_api_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
pip install pypdf
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
#import csvfrom langchain.document_loaders import PyPDFLoader
# Load the PDF file from current working directory
loader = PyPDFLoader("/content/Document sans titre (5).pdf")
# Split the PDF into Pages
pages = loader.load_and_split()
#import from langchain.text_splitter import RecursiveCharacterTextSplitter
# Define chunk size, overlap and separators
text_splitter = RecursiveCharacterTextSplitter(
chunk_size= 128,
chunk_overlap=64,
separators=['\n\n', '\n', '(?=>\. )', ' ', '']
)
docs = text_splitter.split_documents(pages)
from langchain.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings()
pip install faiss-gpu
#Create the vectorized db
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
from langchain.vectorstores import FAISS
db = FAISS.from_documents(docs, embeddings)
llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000, "max_new_tokens": 500})
chain = load_qa_chain(llm, chain_type="stuff")
#QUERYING
query = "quelles sont les villes les facultees de medcine ?"
docs = db.similarity_search(query)
chain.run(input_documents=docs, question=query)
from langchain.chains import RetrievalQA
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}))
query = "donner moi plus des information sur les facultees de medcine?"
qa.run(query)
query = "What is the meaning of Descriptive Data Analysis?"
qa.run(query)#import csv
repo_id = 'google/flan-t5-xxl' # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
llm = HuggingFaceHub(huggingfacehub_api_token=os.environ["HUGGINGFACEHUB_API_TOKEN"],
repo_id=repo_id,
model_kwargs={'temperature':0.5, 'max_length':256})
query1 = "Bonjour, je suis zaynab ,j'ai des questions a vous "
query2 = "j'habite a marrakech. tu sait son pays?"
query3 = "quel est mon prenom?"
query4 = "ou j'habite"
pip install langchain --upgrade
from langchain import HuggingFaceHub
from langchain.chains import ConversationChain
"""### Conversation Buffer memory"""
from langchain.chains.conversation.memory import ConversationBufferMemory
# Adjust the import path accordingly
memory = ConversationBufferMemory()
conversation_buf = ConversationChain(
llm=llm,
memory=memory)
print("input: ",query1)
conversation_buf.predict(input=query1)
print("input: ",query2)
conversation_buf.predict(input=query2)
memory.load_memory_variables({})
print("input: ",query3)
conversation_buf.predict(input=query3)
print("input: ",query4)
conversation_buf.predict(input=query4)
print(memory.buffer)
"""### Conversation Buffer Window Memory"""
from langchain.memory import ConversationBufferWindowMemory
memory2 = ConversationBufferWindowMemory(k=2)
conversation_buf2 = ConversationChain(
llm=llm,
memory=memory2
)
print("input: ",query1)
conversation_buf2.predict(input=query1)
print("input: ",query2)
conversation_buf2.predict(input=query2)
print("input: ",query3)
conversation_buf2.predict(input=query3)
print(memory2.buffer)
"""### Conversation Summary Memory"""
from langchain.memory import ConversationSummaryBufferMemory
memory3 = ConversationSummaryBufferMemory(llm=llm, max_token_limit=80)
conversation_buf3 = ConversationChain(
llm=llm,
memory=memory3
)
print("input: ",query1)
conversation_buf3.predict(input=query1)
print("input: ",query2)
conversation_buf3.predict(input=query2)
print("input: ",query3)
conversation_buf3.predict(input=query3)
memory3.load_memory_variables({})
"""### Chat PDF with Memory
Updated version of Pydantic package (dependency of chromadb) has changed leaving chromadb, incompatible: here are the possible solutions: [import error chromadb](https://github.com/langchain-ai/langchain/issues/1957) || Install specific versions of chromadb and pydantic while the bug is resolved

path = input("Enter PDF file path: ")#"C:/Users/Sourav/Downloads/pdf"
loader = PyPDFLoader(path)
pages = loader.load()
#number of pages
len(pages)
splitter = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=10)
docs = splitter.split_documents(pages)
tokens = docs
num_tokens = len(tokens)
print("Nombre de jetons :", num_tokens)
for token in tokens:
print(token)
embeddings = HuggingFaceEmbeddings()
doc_search = Chroma.from_documents(docs, embeddings)
print(doc_search)
query = "Quelle sont les Facultees existent ?"
similar_docs = doc_search.similarity_search(query, k=3)
print(similar_docs)
query = "donner moi des information ecole nationale d'Industrie Minérale ?"
similar_docs = doc_search.similarity_search(query, k=10)
repo_id = 'google/flan-t5-xxl' # has 3B parameters: https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
llm = HuggingFaceHub(huggingfacehub_api_token=os.environ['HUGGING_FACE_HUB_API_KEY'],
repo_id=repo_id,
model_kwargs={'temperature':1, 'max_length':10000000000, "max_tokens":1000000000})
template = """
Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question:
------
<ctx>
{context}
</ctx>
------
<hs>
{history}
</hs>
------
{question}
Answer:
"""
prompt = PromptTemplate(
input_variables=["history", "context", "question"],
template=template,
)
memory = ConversationBufferMemory(
memory_key="history",
input_key="question"
)
retrieval_chain = RetrievalQA.from_chain_type(llm,
chain_type='stuff',
retriever=doc_search.as_retriever(),
chain_type_kwargs={
"prompt": prompt,
"memory": memory
})
query = " donner moi les villes de ces facultees de medcine? "
retrieval_chain.run(query)
query = "donner moi des information sur Facultees de medcine ?"
retrieval_chain.run(query)
memory.load_memory_variables({})
|