File size: 16,233 Bytes
a8a303f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import ast
import copy
import html
import pprint
import random
import re
import time
import traceback

import numpy as np
import torch
import transformers
from transformers import LogitsProcessorList, is_torch_xpu_available

import modules.shared as shared
from modules.callbacks import (
    Iteratorize,
    Stream,
    _StopEverythingStoppingCriteria
)
from modules.extensions import apply_extensions
from modules.grammar.grammar_utils import initialize_grammar
from modules.grammar.logits_process import GrammarConstrainedLogitsProcessor
from modules.html_generator import generate_4chan_html, generate_basic_html
from modules.logging_colors import logger
from modules.models import clear_torch_cache, local_rank


def generate_reply(*args, **kwargs):
    shared.generation_lock.acquire()
    try:
        for result in _generate_reply(*args, **kwargs):
            yield result
    finally:
        shared.generation_lock.release()


def _generate_reply(question, state, stopping_strings=None, is_chat=False, escape_html=False, for_ui=False):

    # Find the appropriate generation function
    generate_func = apply_extensions('custom_generate_reply')
    if generate_func is None:
        if shared.model_name == 'None' or shared.model is None:
            logger.error("No model is loaded! Select one in the Model tab.")
            yield ''
            return

        if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel']:
            generate_func = generate_reply_custom
        else:
            generate_func = generate_reply_HF

    if generate_func != generate_reply_HF and shared.args.verbose:
        logger.info("PROMPT=")
        print(question)
        print()

    # Prepare the input
    original_question = question
    if not is_chat:
        state = apply_extensions('state', state)
        question = apply_extensions('input', question, state)

    # Find the stopping strings
    all_stop_strings = []
    for st in (stopping_strings, state['custom_stopping_strings']):
        if type(st) is str:
            st = ast.literal_eval(f"[{st}]")

        if type(st) is list and len(st) > 0:
            all_stop_strings += st

    shared.stop_everything = False
    clear_torch_cache()
    seed = set_manual_seed(state['seed'])
    last_update = -1
    reply = ''
    is_stream = state['stream']
    if len(all_stop_strings) > 0 and not state['stream']:
        state = copy.deepcopy(state)
        state['stream'] = True

    min_update_interval = 0
    if state.get('max_updates_second', 0) > 0:
        min_update_interval = 1 / state['max_updates_second']

    # Generate
    for reply in generate_func(question, original_question, seed, state, stopping_strings, is_chat=is_chat):
        reply, stop_found = apply_stopping_strings(reply, all_stop_strings)
        if escape_html:
            reply = html.escape(reply)
        if is_stream:
            cur_time = time.time()

            # Maximum number of tokens/second
            if state['max_tokens_second'] > 0:
                diff = 1 / state['max_tokens_second'] - (cur_time - last_update)
                if diff > 0:
                    time.sleep(diff)

                last_update = time.time()
                yield reply

            # Limit updates to avoid lag in the Gradio UI
            # API updates are not limited
            else:
                if cur_time - last_update > min_update_interval:
                    last_update = cur_time
                    yield reply

        if stop_found or (state['max_tokens_second'] > 0 and shared.stop_everything):
            break

    if not is_chat:
        reply = apply_extensions('output', reply, state)

    yield reply


def encode(prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
    if shared.tokenizer is None:
        raise ValueError('No tokenizer is loaded')

    if shared.model.__class__.__name__ in ['LlamaCppModel', 'CtransformersModel', 'Exllamav2Model']:
        input_ids = shared.tokenizer.encode(str(prompt))
        if shared.model.__class__.__name__ not in ['Exllamav2Model']:
            input_ids = np.array(input_ids).reshape(1, len(input_ids))
    else:
        input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', add_special_tokens=add_special_tokens)
        if not add_bos_token:
            while len(input_ids[0]) > 0 and input_ids[0][0] == shared.tokenizer.bos_token_id:
                input_ids = input_ids[:, 1:]

    # Handling truncation
    if truncation_length is not None:
        input_ids = input_ids[:, -truncation_length:]

    if shared.model.__class__.__name__ in ['LlamaCppModel', 'Exllamav2Model', 'CtransformersModel'] or shared.args.cpu:
        return input_ids
    elif shared.args.deepspeed:
        return input_ids.to(device=local_rank)
    elif torch.backends.mps.is_available():
        device = torch.device('mps')
        return input_ids.to(device)
    elif is_torch_xpu_available():
        return input_ids.to("xpu:0")
    else:
        return input_ids.cuda()


def decode(output_ids, skip_special_tokens=True):
    if shared.tokenizer is None:
        raise ValueError('No tokenizer is loaded')

    return shared.tokenizer.decode(output_ids, skip_special_tokens=skip_special_tokens)


def get_encoded_length(prompt):
    length_after_extensions = apply_extensions('tokenized_length', prompt)
    if length_after_extensions is not None:
        return length_after_extensions

    return len(encode(prompt)[0])


def get_token_ids(prompt):
    tokens = encode(prompt)[0]
    decoded_tokens = [shared.tokenizer.decode([i]) for i in tokens]

    output = ''
    for row in list(zip(tokens, decoded_tokens)):
        output += f"{str(int(row[0])).ljust(5)}  -  {repr(row[1])}\n"

    return output


def get_max_prompt_length(state):
    return state['truncation_length'] - state['max_new_tokens']


def generate_reply_wrapper(question, state, stopping_strings=None):
    """
    Returns formatted outputs for the UI
    """
    reply = question if not shared.is_seq2seq else ''
    yield formatted_outputs(reply, shared.model_name)

    for reply in generate_reply(question, state, stopping_strings, is_chat=False, escape_html=True, for_ui=True):
        if not shared.is_seq2seq:
            reply = question + reply

        yield formatted_outputs(reply, shared.model_name)


def formatted_outputs(reply, model_name):
    if any(s in model_name for s in ['gpt-4chan', 'gpt4chan']):
        reply = fix_gpt4chan(reply)
        return html.unescape(reply), generate_4chan_html(reply)
    else:
        return html.unescape(reply), generate_basic_html(reply)


def fix_gpt4chan(s):
    """
    Removes empty replies from gpt4chan outputs
    """
    for i in range(10):
        s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
        s = re.sub("--- [0-9]*\n *\n---", "---", s)
        s = re.sub("--- [0-9]*\n\n\n---", "---", s)

    return s


def fix_galactica(s):
    """
    Fix the LaTeX equations in GALACTICA
    """
    s = s.replace(r'\[', r'$')
    s = s.replace(r'\]', r'$')
    s = s.replace(r'\(', r'$')
    s = s.replace(r'\)', r'$')
    s = s.replace(r'$$', r'$')
    s = re.sub(r'\n', r'\n\n', s)
    s = re.sub(r"\n{3,}", "\n\n", s)
    return s


def set_manual_seed(seed):
    seed = int(seed)
    if seed == -1:
        seed = random.randint(1, 2**31)

    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    elif is_torch_xpu_available():
        torch.xpu.manual_seed_all(seed)

    return seed


def stop_everything_event():
    shared.stop_everything = True


def apply_stopping_strings(reply, all_stop_strings):
    stop_found = False
    for string in all_stop_strings:
        idx = reply.find(string)
        if idx != -1:
            reply = reply[:idx]
            stop_found = True
            break

    if not stop_found:
        # If something like "\nYo" is generated just before "\nYou:"
        # is completed, trim it
        for string in all_stop_strings:
            for j in range(len(string) - 1, 0, -1):
                if reply[-j:] == string[:j]:
                    reply = reply[:-j]
                    break
            else:
                continue

            break

    return reply, stop_found


def get_reply_from_output_ids(output_ids, state=None, starting_from=0):
    reply = decode(output_ids[starting_from:], state['skip_special_tokens'] if state else True)

    # Handle tokenizers that do not add the leading space for the first token
    if (hasattr(shared.tokenizer, 'convert_ids_to_tokens') and len(output_ids) > starting_from) and not reply.startswith(' '):
        first_token = shared.tokenizer.convert_ids_to_tokens(int(output_ids[starting_from]))
        if isinstance(first_token, (bytes,)):
            first_token = first_token.decode('utf8')

        if first_token.startswith('โ–'):
            reply = ' ' + reply

    return reply


def generate_reply_HF(question, original_question, seed, state, stopping_strings=None, is_chat=False):
    generate_params = {}
    for k in ['max_new_tokens', 'temperature', 'temperature_last', 'dynamic_temperature', 'dynatemp_low', 'dynatemp_high', 'dynatemp_exponent', 'smoothing_factor', 'top_p', 'min_p', 'top_k', 'repetition_penalty', 'presence_penalty', 'frequency_penalty', 'repetition_penalty_range', 'typical_p', 'tfs', 'top_a', 'guidance_scale', 'penalty_alpha', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'do_sample', 'encoder_repetition_penalty', 'no_repeat_ngram_size', 'min_length', 'num_beams', 'length_penalty', 'early_stopping']:
        if k in state:
            generate_params[k] = state[k]

    if isinstance(state['sampler_priority'], list) and len(state['sampler_priority']) > 0:
        generate_params['sampler_priority'] = state['sampler_priority']
    elif isinstance(state['sampler_priority'], str) and state['sampler_priority'].strip() != '':
        generate_params['sampler_priority'] = [x.strip() for x in state['sampler_priority'].replace('\n', ',').split(',') if x.strip()]

    if state['negative_prompt'] != '':
        generate_params['negative_prompt_ids'] = encode(state['negative_prompt'])

    if state['prompt_lookup_num_tokens'] > 0:
        generate_params['prompt_lookup_num_tokens'] = state['prompt_lookup_num_tokens']

    for k in ['epsilon_cutoff', 'eta_cutoff']:
        if state[k] > 0:
            generate_params[k] = state[k] * 1e-4

    if state['ban_eos_token']:
        generate_params['suppress_tokens'] = [shared.tokenizer.eos_token_id]

    if state['custom_token_bans']:
        to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
        if len(to_ban) > 0:
            if generate_params.get('suppress_tokens', None):
                generate_params['suppress_tokens'] += to_ban
            else:
                generate_params['suppress_tokens'] = to_ban

    generate_params.update({'use_cache': not shared.args.no_cache})
    if shared.args.deepspeed:
        generate_params.update({'synced_gpus': True})

    # Encode the input
    input_ids = encode(question, add_bos_token=state['add_bos_token'], truncation_length=get_max_prompt_length(state))
    output = input_ids[0]
    cuda = not any((shared.args.cpu, shared.args.deepspeed))
    if state['auto_max_new_tokens']:
        generate_params['max_new_tokens'] = state['truncation_length'] - input_ids.shape[-1]

    # Add the encoded tokens to generate_params
    question, input_ids, inputs_embeds = apply_extensions('tokenizer', state, question, input_ids, None)
    original_input_ids = input_ids
    generate_params.update({'inputs': input_ids})
    if inputs_embeds is not None:
        generate_params.update({'inputs_embeds': inputs_embeds})

    # Stopping criteria / eos token
    eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
    generate_params['eos_token_id'] = eos_token_ids
    generate_params['stopping_criteria'] = transformers.StoppingCriteriaList()
    generate_params['stopping_criteria'].append(_StopEverythingStoppingCriteria())

    # Logits processor
    processor = state.get('logits_processor', LogitsProcessorList([]))
    if not isinstance(processor, LogitsProcessorList):
        processor = LogitsProcessorList([processor])

    # Grammar
    if state['grammar_string'].strip() != '':
        grammar = initialize_grammar(state['grammar_string'])
        grammar_processor = GrammarConstrainedLogitsProcessor(grammar)
        processor.append(grammar_processor)

    apply_extensions('logits_processor', processor, input_ids)
    generate_params['logits_processor'] = processor

    if shared.args.verbose:
        logger.info("GENERATE_PARAMS=")
        filtered_params = {key: value for key, value in generate_params.items() if not isinstance(value, torch.Tensor)}
        pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(filtered_params)
        print()

        logger.info("PROMPT=")
        print(decode(input_ids[0], skip_special_tokens=False))
        print()

    t0 = time.time()
    try:
        if not is_chat and not shared.is_seq2seq:
            yield ''

        # Generate the entire reply at once.
        if not state['stream']:
            with torch.no_grad():
                output = shared.model.generate(**generate_params)[0]
                if cuda:
                    output = output.cuda()

            starting_from = 0 if shared.is_seq2seq else len(input_ids[0])
            yield get_reply_from_output_ids(output, state, starting_from=starting_from)

        # Stream the reply 1 token at a time.
        # This is based on the trick of using 'stopping_criteria' to create an iterator.
        else:

            def generate_with_callback(callback=None, *args, **kwargs):
                kwargs['stopping_criteria'].append(Stream(callback_func=callback))
                clear_torch_cache()
                with torch.no_grad():
                    shared.model.generate(**kwargs)

            def generate_with_streaming(**kwargs):
                return Iteratorize(generate_with_callback, [], kwargs, callback=None)

            with generate_with_streaming(**generate_params) as generator:
                cumulative_reply = ''
                starting_from = 0 if shared.is_seq2seq else len(input_ids[0])
                for output in generator:
                    if output[-1] in eos_token_ids:
                        break

                    new_content = get_reply_from_output_ids(output, state, starting_from=starting_from)
                    # check the partial unicode character
                    if chr(0xfffd) in new_content:
                        continue

                    cumulative_reply += new_content
                    starting_from = len(output)
                    yield cumulative_reply

    except Exception:
        traceback.print_exc()
    finally:
        t1 = time.time()
        original_tokens = len(original_input_ids[0])
        new_tokens = len(output) - (original_tokens if not shared.is_seq2seq else 0)
        print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
        return


def generate_reply_custom(question, original_question, seed, state, stopping_strings=None, is_chat=False):
    """
    For models that do not use the transformers library for sampling
    """
    seed = set_manual_seed(state['seed'])

    t0 = time.time()
    reply = ''
    try:
        if not is_chat:
            yield ''

        if not state['stream']:
            reply = shared.model.generate(question, state)
            yield reply
        else:
            for reply in shared.model.generate_with_streaming(question, state):
                yield reply

    except Exception:
        traceback.print_exc()
    finally:
        t1 = time.time()
        original_tokens = len(encode(original_question)[0])
        new_tokens = len(encode(original_question + reply)[0]) - original_tokens
        print(f'Output generated in {(t1-t0):.2f} seconds ({new_tokens/(t1-t0):.2f} tokens/s, {new_tokens} tokens, context {original_tokens}, seed {seed})')
        return