Spaces:
Runtime error
Runtime error
File size: 15,693 Bytes
e67043b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from functools import wraps
import io
import json
import os
import random
import requests
from ..tool import Tool
from huggingface_hub.inference_api import InferenceApi
import base64
from io import BytesIO
import os
import random
import uuid
import requests
from PIL import Image, ImageDraw
from diffusers.utils import load_image
from pydub import AudioSegment
from huggingface_hub.inference_api import InferenceApi
from huggingface_hub.utils._errors import RepositoryNotFoundError
DIRPATH = os.path.dirname(os.path.abspath(__file__))
CONFIG = {
"debug": False,
"log_file": None,
"huggingface": {"token": os.environ.get("HUGGINGFACE_API_KEY")},
"proxy": None,
"inference_mode": "huggingface",
"local_inference_endpoint": {"host": "localhost", "port": 8005},
"huggingface_inference_endpoint": {
"host": "api-inference.huggingface.co",
"port": 443,
},
}
HUGGINGFACE_HEADERS = {}
if CONFIG["huggingface"]["token"] and CONFIG["huggingface"]["token"].startswith(
"hf_"
): # Check for valid huggingface token in config file
HUGGINGFACE_HEADERS = {
"Authorization": f"Bearer {CONFIG['huggingface']['token']}",
}
elif "HUGGINGFACE_ACCESS_TOKEN" in os.environ and os.getenv(
"HUGGINGFACE_API_KEY"
).startswith(
"hf_"
): # Check for environment variable HUGGINGFACE_ACCESS_TOKEN
HUGGINGFACE_HEADERS = {
"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}",
}
else:
raise ValueError(f"Incrorrect HuggingFace token. Please check your file.")
PROXY = None
if CONFIG["proxy"]:
PROXY = {
"https": CONFIG["proxy"],
}
INFERENCE_MODE = CONFIG["inference_mode"]
DOCS_PATH = "sources/docs.json"
INPUT_PATH = "files"
OUTPUT_PATH = "files"
MODEL_SERVER = None
if INFERENCE_MODE != "huggingface":
MODEL_SERVER = (
"http://"
+ CONFIG["local_inference_endpoint"]["host"]
+ ":"
+ str(CONFIG["local_inference_endpoint"]["port"])
)
message = f"The server of local inference endpoints is not running, please start it first. (or using `inference_mode: huggingface` in for a feature-limited experience)"
try:
r = requests.get(MODEL_SERVER + "/running")
if r.status_code != 200:
raise ValueError(message)
except:
raise ValueError(message)
def get_model_status(model_id, url, headers):
# endpoint_type = "huggingface" if "huggingface" in url else "local"
if "huggingface" in url:
r = requests.get(url + f"/{model_id}", headers=headers, proxies=PROXY)
else:
r = requests.get(url)
return r.status_code == 200 and "loaded" in r.json() and r.json()["loaded"]
def image_to_bytes(img_url):
img_byte = io.BytesIO()
load_image(img_url).save(img_byte, format="png")
img_data = img_byte.getvalue()
return img_data
def build_tool(conf) -> Tool:
task_list = []
tool = Tool(
tool_name="hugging_tools",
description="API interface for HuggingGPT-like applications.",
name_for_model="hugging_tools",
description_for_model="""This API interface provides easy access to popular models available on the Huggingface model hub. You MUST check model_docs to fetch the available models FIRST:
Action: model_docs
Action Input: {"task" : <task_name>}
After that you can choose an available models. """,
logo_url="https://your-app-url.com/.well-known/logo.png",
contact_email="test@123.com",
legal_info_url="hello@legal.com",
)
# set the get route to /func.__name__ and format docs
def task(func):
func.__doc__ = (
"""You MUST check model_docs to fetch the available models FIRST:
Action: model_docs
Action Input: {"task" : "%s"}
After that you can choose an available models in the list.
"""
% func.__name__
)
@wraps(func)
def try_run_task(*args, **kwargs):
try:
return func(*args, **kwargs)
except RepositoryNotFoundError as e:
return """The model with model_id you input is not available. Plese check the model_docs to get other available models:
Action: model_docs
Action Input: {"task" : "%s"}
After that you can choose an available models in the list.
"""
path = "/" + func.__name__
try_run_task.route = path
task_list.append(func.__name__)
return tool.get(path)(try_run_task)
def format_docs(str):
def set_docs(func):
func.__doc__ = func.__doc__ % str
@wraps(func)
def original_func(*args, **kwargs):
return func(*args, **kwargs)
return original_func
return set_docs
@task
def question_answering(model_id: str, question: str, context: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(
inference({"question": question, "context": (context if context else "")})
)
@task
def sentence_similarity(model_id: str, text: str, context: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(
inference(
{"source_sentence": text, "sentences": [(context if context else "")]}
)
)
@task
def text_classification(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
@task
def token_classification(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
@task
def text2text_generation(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
@task
def summarization(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
@task
def translation(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
@task
def conversational(
model_id: str, text: str, past_user_inputs: str, generated_responses: str
) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
input = {
"past_user_inputs": [past_user_inputs],
"generated_responses": [generated_responses],
"text": text,
}
return str(inference(input))
@task
def text_generation(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
return str(inference(text))
# CV tasks
@task
def visual_question_answering(
model_id: str, image_file_name: str, text: str
) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
img_base64 = base64.b64encode(img_data).decode("utf-8")
return str(inference({"question": text, "image": img_base64}))
@task
def document_question_answering(
model_id: str, image_file_name: str, text: str
) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
img_base64 = base64.b64encode(img_data).decode("utf-8")
return str(inference({"question": text, "image": img_base64}))
@task
def image_to_image(model_id: str, image_file_name: str) -> str:
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
# result = inference(data=img_data) # not support
HUGGINGFACE_HEADERS["Content-Length"] = str(len(img_data))
task_url = f"https://api-inference.huggingface.co/models/{model_id}"
r = requests.post(task_url, headers=HUGGINGFACE_HEADERS, data=img_data)
name = str(uuid.uuid4())[:4]
result = f"{name}.jpeg"
with open(f"{DIRPATH}/{OUTPUT_PATH}/{result}", "wb") as f:
f.write(r.content)
return result
@task
def text_to_image(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img = inference(text)
name = str(uuid.uuid4())[:4]
print(img.format)
image_type = "jpg" if img.format == "JPEG" else "png"
img.save(f"{DIRPATH}/{OUTPUT_PATH}/{name}.{image_type}")
result = f"{name}.{image_type}"
return result
@task
def image_segmentation(model_id: str, image_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
image = Image.open(BytesIO(img_data))
predicted = inference(data=img_data)
colors = []
for i in range(len(predicted)):
colors.append(
(
random.randint(100, 255),
random.randint(100, 255),
random.randint(100, 255),
155,
)
)
for i, pred in enumerate(predicted):
mask = pred.pop("mask").encode("utf-8")
mask = base64.b64decode(mask)
mask = Image.open(BytesIO(mask), mode="r")
mask = mask.convert("L")
layer = Image.new("RGBA", mask.size, colors[i])
image.paste(layer, (0, 0), mask)
name = str(uuid.uuid4())[:4]
image.save(f"{DIRPATH}/{OUTPUT_PATH}/{name}.jpg")
result = {}
result["generated image"] = f"{name}.jpg"
result["predicted"] = predicted
return str(result)
@task
def object_detection(model_id: str, image_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
predicted = inference(data=img_data)
image = Image.open(BytesIO(img_data))
draw = ImageDraw.Draw(image)
labels = list(item["label"] for item in predicted)
color_map = {}
for label in labels:
if label not in color_map:
color_map[label] = (
random.randint(0, 255),
random.randint(0, 100),
random.randint(0, 255),
)
for label in predicted:
box = label["box"]
draw.rectangle(
((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])),
outline=color_map[label["label"]],
width=2,
)
draw.text(
(box["xmin"] + 5, box["ymin"] - 15),
label["label"],
fill=color_map[label["label"]],
)
name = str(uuid.uuid4())[:4]
image.save(f"{DIRPATH}/{OUTPUT_PATH}/{name}.jpg")
result = {}
result["generated image"] = f"{name}.jpg"
result["predicted"] = predicted
return str(result)
@task
def image_classification(model_id: str, image_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
result = inference(data=img_data)
return str(result)
@task
def image_to_text(model_id: str, image_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
img_data = image_to_bytes(f"{DIRPATH}/{INPUT_PATH}/{image_file_name}")
result = inference(data=img_data)
return str(result)
# AUDIO tasks
@task
def text_to_speech(model_id: str, text: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
response = inference(text, raw_response=True)
name = str(uuid.uuid4())[:4]
with open(f"{DIRPATH}/{OUTPUT_PATH}/{name}.flac", "wb") as f:
f.write(response.content)
result = f"{name}.flac"
return result
@task
def automatic_speech_recognition(model_id: str, audio_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
with open(f"{DIRPATH}/{INPUT_PATH}/{audio_file_name}", "rb") as f:
audio = f.read()
text = inference(data=audio, raw_response=True)
result = text.content
return str(result)
@task
def audio_to_audio(model_id: str, audio_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
with open(f"{DIRPATH}/{INPUT_PATH}/{audio_file_name}", "rb") as f:
audio = f.read()
response = inference(data=audio, raw_response=True)
result = response.json()
content = None
type = None
for k, v in result[0].items():
if k == "blob":
content = base64.b64decode(v.encode("utf-8"))
if k == "content-type":
type = "audio/flac".split("/")[-1]
audio = AudioSegment.from_file(BytesIO(content))
name = str(uuid.uuid4())[:4]
audio.export(f"{DIRPATH}/{OUTPUT_PATH}/{name}.{type}", format=type)
result = f"{name}.{type}"
return result
@task
def audio_classification(model_id: str, audio_file_name: str) -> str:
inference = InferenceApi(repo_id=model_id, token=CONFIG["huggingface"]["token"])
with open(f"{DIRPATH}/{INPUT_PATH}/{audio_file_name}", "rb") as f:
audio = f.read()
response = inference(data=audio, raw_response=True)
result = response.json()
return str(result)
@tool.get("/model_docs")
@format_docs(str(task_list))
def model_docs(task: str) -> str:
"""returns a document about the usage, examples, and available models of existing API.
Every time before you use the API, you should get the document of EXISTING API ONLY and ONLY use the available models in the document.
task: the name of API, includes %s
return the document of the API.
example:
Action: model_docs
Action Input: {"task" : "question_answering"}
Observation: "question_answering is a function that uses a pre-trained language model to answer questions based on a given context.\n You can choose one model from: 'distilbert-base-uncased-distilled-squad', 'deepset/minilm-uncased-squad2', 'etalab-ia/camembert-base-squadFR-fquad-piaf'.\n\n Action Input: {\"model_id\" : \"distilbert-base-uncased-distilled-squad\", \"question\" : \"When did the first moon landing occur?\", \"context\" : \"The first manned moon landing was achieved by the United States on July 20, 1969, in the Apollo 11 mission.\"}\n "
"""
with open(f"{DIRPATH}/{DOCS_PATH}", "r") as f:
docs = json.load(f)
if task in docs.keys():
return docs[task]
else:
return "The function doesn't exist. Please input the valid function name."
return tool
|