Spaces:
Runtime error
Runtime error
File size: 14,025 Bytes
e67043b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
"""Contains classes for querying large language models."""
from math import ceil
import os
import time
from tqdm import tqdm
from abc import ABC, abstractmethod
import openai
gpt_costs_per_thousand = {
"davinci": 0.0200,
"curie": 0.0020,
"babbage": 0.0005,
"ada": 0.0004,
}
def model_from_config(config, disable_tqdm=True):
"""Returns a model based on the config."""
model_type = config["name"]
if model_type == "GPT_forward":
return GPT_Forward(config, disable_tqdm=disable_tqdm)
elif model_type == "GPT_insert":
return GPT_Insert(config, disable_tqdm=disable_tqdm)
raise ValueError(f"Unknown model type: {model_type}")
class LLM(ABC):
"""Abstract base class for large language models."""
@abstractmethod
def generate_text(self, prompt):
"""Generates text from the model.
Parameters:
prompt: The prompt to use. This can be a string or a list of strings.
Returns:
A list of strings.
"""
pass
@abstractmethod
def log_probs(self, text, log_prob_range):
"""Returns the log probs of the text.
Parameters:
text: The text to get the log probs of. This can be a string or a list of strings.
log_prob_range: The range of characters within each string to get the log_probs of.
This is a list of tuples of the form (start, end).
Returns:
A list of log probs.
"""
pass
class GPT_Forward(LLM):
"""Wrapper for GPT-3."""
def __init__(self, config, needs_confirmation=False, disable_tqdm=True):
"""Initializes the model."""
self.config = config
self.needs_confirmation = needs_confirmation
self.disable_tqdm = disable_tqdm
def confirm_cost(self, texts, n, max_tokens):
total_estimated_cost = 0
for text in texts:
total_estimated_cost += (
gpt_get_estimated_cost(self.config, text, max_tokens) * n
)
print(f"Estimated cost: ${total_estimated_cost:.2f}")
# Ask the user to confirm in the command line
if os.getenv("LLM_SKIP_CONFIRM") is None:
confirm = input("Continue? (y/n) ")
if confirm != "y":
raise Exception("Aborted.")
def auto_reduce_n(self, fn, prompt, n):
"""Reduces n by half until the function succeeds."""
try:
return fn(prompt, n)
except BatchSizeException as e:
if n == 1:
raise e
return self.auto_reduce_n(fn, prompt, n // 2) + self.auto_reduce_n(
fn, prompt, n // 2
)
def generate_text(self, prompt, n):
if not isinstance(prompt, list):
prompt = [prompt]
if self.needs_confirmation:
self.confirm_cost(prompt, n, self.config["gpt_config"]["max_tokens"])
batch_size = self.config["batch_size"]
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, "
f"split into {len(prompt_batches)} batches of size {batch_size * n}"
)
text = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
text += self.auto_reduce_n(self.__generate_text, prompt_batch, n)
return text
def complete(self, prompt, n):
"""Generates text from the model and returns the log prob data."""
if not isinstance(prompt, list):
prompt = [prompt]
batch_size = self.config["batch_size"]
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, "
f"split into {len(prompt_batches)} batches of size {batch_size * n}"
)
res = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
res += self.__complete(prompt_batch, n)
return res
def log_probs(self, text, log_prob_range=None):
"""Returns the log probs of the text."""
if not isinstance(text, list):
text = [text]
if self.needs_confirmation:
self.confirm_cost(text, 1, 0)
batch_size = self.config["batch_size"]
text_batches = [
text[i : i + batch_size] for i in range(0, len(text), batch_size)
]
if log_prob_range is None:
log_prob_range_batches = [None] * len(text)
else:
assert len(log_prob_range) == len(text)
log_prob_range_batches = [
log_prob_range[i : i + batch_size]
for i in range(0, len(log_prob_range), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Getting log probs for {len(text)} strings, "
f"split into {len(text_batches)} batches of (maximum) size {batch_size}"
)
log_probs = []
tokens = []
for text_batch, log_prob_range in tqdm(
list(zip(text_batches, log_prob_range_batches)), disable=self.disable_tqdm
):
log_probs_batch, tokens_batch = self.__log_probs(text_batch, log_prob_range)
log_probs += log_probs_batch
tokens += tokens_batch
return log_probs, tokens
def __generate_text(self, prompt, n):
"""Generates text from the model."""
if not isinstance(prompt, list):
text = [prompt]
config = self.config["gpt_config"].copy()
config["n"] = n
# If there are any [APE] tokens in the prompts, remove them
for i in range(len(prompt)):
prompt[i] = prompt[i].replace("[APE]", "").strip()
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=prompt)
except Exception as e:
if "is greater than the maximum" in str(e):
raise BatchSizeException()
print(e)
print("Retrying...")
time.sleep(5)
return [response["choices"][i]["text"] for i in range(len(response["choices"]))]
def __complete(self, prompt, n):
"""Generates text from the model and returns the log prob data."""
if not isinstance(prompt, list):
text = [prompt]
config = self.config["gpt_config"].copy()
config["n"] = n
# If there are any [APE] tokens in the prompts, remove them
for i in range(len(prompt)):
prompt[i] = prompt[i].replace("[APE]", "").strip()
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=prompt)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
return response["choices"]
def __log_probs(self, text, log_prob_range=None):
"""Returns the log probs of the text."""
if not isinstance(text, list):
text = [text]
if log_prob_range is not None:
for i in range(len(text)):
lower_index, upper_index = log_prob_range[i]
assert lower_index < upper_index
assert lower_index >= 0
assert upper_index - 1 < len(text[i])
config = self.config["gpt_config"].copy()
config["logprobs"] = 1
config["echo"] = True
config["max_tokens"] = 0
if isinstance(text, list):
text = [f"\n{text[i]}" for i in range(len(text))]
else:
text = f"\n{text}"
response = None
while response is None:
try:
response = openai.Completion.create(**config, prompt=text)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
log_probs = [
response["choices"][i]["logprobs"]["token_logprobs"][1:]
for i in range(len(response["choices"]))
]
tokens = [
response["choices"][i]["logprobs"]["tokens"][1:]
for i in range(len(response["choices"]))
]
offsets = [
response["choices"][i]["logprobs"]["text_offset"][1:]
for i in range(len(response["choices"]))
]
# Subtract 1 from the offsets to account for the newline
for i in range(len(offsets)):
offsets[i] = [offset - 1 for offset in offsets[i]]
if log_prob_range is not None:
# First, we need to find the indices of the tokens in the log probs
# that correspond to the tokens in the log_prob_range
for i in range(len(log_probs)):
lower_index, upper_index = self.get_token_indices(
offsets[i], log_prob_range[i]
)
log_probs[i] = log_probs[i][lower_index:upper_index]
tokens[i] = tokens[i][lower_index:upper_index]
return log_probs, tokens
def get_token_indices(self, offsets, log_prob_range):
"""Returns the indices of the tokens in the log probs that correspond to the tokens in the log_prob_range."""
# For the lower index, find the highest index that is less than or equal to the lower index
lower_index = 0
for i in range(len(offsets)):
if offsets[i] <= log_prob_range[0]:
lower_index = i
else:
break
upper_index = len(offsets)
for i in range(len(offsets)):
if offsets[i] >= log_prob_range[1]:
upper_index = i
break
return lower_index, upper_index
class GPT_Insert(LLM):
def __init__(self, config, needs_confirmation=False, disable_tqdm=True):
"""Initializes the model."""
self.config = config
self.needs_confirmation = needs_confirmation
self.disable_tqdm = disable_tqdm
def confirm_cost(self, texts, n, max_tokens):
total_estimated_cost = 0
for text in texts:
total_estimated_cost += (
gpt_get_estimated_cost(self.config, text, max_tokens) * n
)
print(f"Estimated cost: ${total_estimated_cost:.2f}")
# Ask the user to confirm in the command line
if os.getenv("LLM_SKIP_CONFIRM") is None:
confirm = input("Continue? (y/n) ")
if confirm != "y":
raise Exception("Aborted.")
def auto_reduce_n(self, fn, prompt, n):
"""Reduces n by half until the function succeeds."""
try:
return fn(prompt, n)
except BatchSizeException as e:
if n == 1:
raise e
return self.auto_reduce_n(fn, prompt, n // 2) + self.auto_reduce_n(
fn, prompt, n // 2
)
def generate_text(self, prompt, n):
if not isinstance(prompt, list):
prompt = [prompt]
if self.needs_confirmation:
self.confirm_cost(prompt, n, self.config["gpt_config"]["max_tokens"])
batch_size = self.config["batch_size"]
assert batch_size == 1
prompt_batches = [
prompt[i : i + batch_size] for i in range(0, len(prompt), batch_size)
]
if not self.disable_tqdm:
print(
f"[{self.config['name']}] Generating {len(prompt) * n} completions, split into {len(prompt_batches)} batches of (maximum) size {batch_size * n}"
)
text = []
for prompt_batch in tqdm(prompt_batches, disable=self.disable_tqdm):
text += self.auto_reduce_n(self.__generate_text, prompt_batch, n)
return text
def log_probs(self, text, log_prob_range=None):
raise NotImplementedError
def __generate_text(self, prompt, n):
"""Generates text from the model."""
config = self.config["gpt_config"].copy()
config["n"] = n
# Split prompts into prefixes and suffixes with the [APE] token (do not include the [APE] token in the suffix)
prefix = prompt[0].split("[APE]")[0]
suffix = prompt[0].split("[APE]")[1]
response = None
while response is None:
try:
response = openai.Completion.create(
**config, prompt=prefix, suffix=suffix
)
except Exception as e:
print(e)
print("Retrying...")
time.sleep(5)
# Remove suffix from the generated text
texts = [
response["choices"][i]["text"].replace(suffix, "")
for i in range(len(response["choices"]))
]
return texts
def gpt_get_estimated_cost(config, prompt, max_tokens):
"""Uses the current API costs/1000 tokens to estimate the cost of generating text from the model."""
# Get rid of [APE] token
prompt = prompt.replace("[APE]", "")
# Get the number of tokens in the prompt
n_prompt_tokens = len(prompt) // 4
# Get the number of tokens in the generated text
total_tokens = n_prompt_tokens + max_tokens
engine = config["gpt_config"]["model"].split("-")[1]
costs_per_thousand = gpt_costs_per_thousand
if engine not in costs_per_thousand:
# Try as if it is a fine-tuned model
engine = config["gpt_config"]["model"].split(":")[0]
costs_per_thousand = {
"davinci": 0.1200,
"curie": 0.0120,
"babbage": 0.0024,
"ada": 0.0016,
}
price = costs_per_thousand[engine] * total_tokens / 1000
return price
class BatchSizeException(Exception):
pass
|