Spaces:
Runtime error
Runtime error
File size: 13,895 Bytes
e67043b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import json
import os
import requests
import numpy as np
import openai
import paramiko
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet, stopwords
from nltk.tokenize import word_tokenize
import nltk
from ..tool import Tool
from swarms.tools.tools.database.utils.db_parser import get_conf
from swarms.tools.tools.database.utils.database import DBArgs, Database
from swarms.tools.models.customllm import CustomLLM
from swarms.tools.knowledge.knowledge_extraction import KnowledgeExtraction
from swarms.tools.tools.db_diag.anomaly_detection import detect_anomalies
from swarms.tools.tools.db_diag.anomaly_detection import prometheus
from swarms.tools.tools.db_diag.example_generate import bm25
import warnings
def obtain_values_of_metrics(start_time, end_time, metrics):
if (
end_time - start_time > 11000 * 3
): # maximum resolution of 11,000 points per timeseries
# raise Exception("The time range is too large, please reduce the time range")
warnings.warn(
"The time range ({}, {}) is too large, please reduce the time range".format(
start_time, end_time
)
)
required_values = {}
print(" ====> metrics: ", metrics)
for metric in metrics:
metric_values = prometheus(
"api/v1/query_range",
{"query": metric, "start": start_time, "end": end_time, "step": "3"},
)
if metric_values["data"]["result"] != []:
metric_values = metric_values["data"]["result"][0]["values"]
else:
raise Exception("No metric values found for the given time range")
# compute the average value of the metric
max_value = np.max(np.array([float(value) for _, value in metric_values]))
required_values[metric] = max_value
return required_values
def find_abnormal_metrics(start_time, end_time, monitoring_metrics, resource):
resource_keys = ["memory", "cpu", "disk", "network"]
abnormal_metrics = []
for metric_name in monitoring_metrics:
interval_time = 5
metric_values = prometheus(
"api/v1/query_range",
{
"query": metric_name,
"start": start_time - interval_time * 60,
"end": end_time + interval_time * 60,
"step": "3",
},
)
if metric_values["data"]["result"] != []:
metric_values = metric_values["data"]["result"][0]["values"]
else:
continue
if detect_anomalies(np.array([float(value) for _, value in metric_values])):
success = True
for key in resource_keys:
if key in metric_name and key != resource:
success = False
break
if success:
abnormal_metrics.append(metric_name)
return abnormal_metrics
def build_db_diag_tool(config) -> Tool:
tool = Tool(
"Database Diagnosis",
"Diagnose the bottlenecks of a database based on relevant metrics",
name_for_model="db_diag",
description_for_model="Plugin for diagnosing the bottlenecks of a database based on relevant metrics",
logo_url="https://commons.wikimedia.org/wiki/File:Postgresql_elephant.svg",
contact_email="hello@contact.com",
legal_info_url="hello@legal.com",
)
# URL_CURRENT_WEATHER= "http://api.weatherapi.com/v1/current.json"
# URL_FORECAST_WEATHER = "http://api.weatherapi.com/v1/forecast.json"
URL_PROMETHEUS = "http://8.131.229.55:9090/"
prometheus_metrics = {
"cpu_usage": 'avg(rate(process_cpu_seconds_total{instance="172.27.58.65:9187"}[5m]) * 1000)',
"cpu_metrics": [
'node_scrape_collector_duration_seconds{instance="172.27.58.65:9100"}',
'node_procs_running{instance="172.27.58.65:9100"}',
'node_procs_blocked{instance="172.27.58.65:9100"}',
'node_entropy_available_bits{instance="172.27.58.65:9100"}',
'node_load1{instance="172.27.58.65:9100"}',
'node_load5{instance="172.27.58.65:9100"}',
'node_load15{instance="172.27.58.65:9100"}',
],
"memory_usage": 'node_memory_MemTotal_bytes{instance=~"172.27.58.65:9100"} - (node_memory_Cached_bytes{instance=~"172.27.58.65:9100"} + node_memory_Buffers_bytes{instance=~"172.27.58.65:9100"} + node_memory_MemFree_bytes{instance=~"172.27.58.65:9100"})',
"memory_metrics": [
'node_memory_Inactive_anon_bytes{instance="172.27.58.65:9100"}',
'node_memory_MemFree_bytes{instance="172.27.58.65:9100"}',
'node_memory_Dirty_bytes{instance="172.27.58.65:9100"}',
'pg_stat_activity_count{datname=~"(imdbload|postgres|sysbench|template0|template1|tpcc|tpch)", instance=~"172.27.58.65:9187", state="active"} !=0',
],
"network_metrics": [
'node_sockstat_TCP_tw{instance="172.27.58.65:9100"}',
'node_sockstat_TCP_orphan{instance="172.27.58.65:9100"}',
],
}
# "node_sockstat_TCP_tw{instance=\"172.27.58.65:9100\"}",
# load knowlege extractor
knowledge_matcher = KnowledgeExtraction(
"/swarms.tools/tools/db_diag/root_causes_dbmind.jsonl"
)
# load db settings
script_path = os.path.abspath(__file__)
script_dir = os.path.dirname(script_path)
config = get_conf(script_dir + "/my_config.ini", "postgresql")
dbargs = DBArgs("postgresql", config=config) # todo assign database name
# send request to database
db = Database(dbargs, timeout=-1)
server_config = get_conf(script_dir + "/my_config.ini", "benchserver")
monitoring_metrics = []
with open(
str(os.getcwd()) + "/swarms/tools/db_diag/database_monitoring_metrics", "r"
) as f:
monitoring_metrics = f.read()
monitoring_metrics = eval(monitoring_metrics)
@tool.get("/obtain_start_and_end_time_of_anomaly")
def obtain_start_and_end_time_of_anomaly():
# Create SSH client
ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
start_time = 0
end_time = 0
try:
# Connect to the remote server
ssh.connect(
server_config["server_address"],
username=server_config["username"],
password=server_config["password"],
)
# Create an SFTP client
sftp = ssh.open_sftp()
# Change to the remote directory
sftp.chdir(server_config["remote_directory"])
# Get a list of files in the directory
files = sftp.listdir()
required_file_name = ""
required_tp = -1
# Read the contents of each file
for filename in files:
remote_filepath = server_config["remote_directory"] + "/" + filename
if "trigger_time_log" not in filename:
continue
tp = filename.split("_")[0]
if tp.isdigit():
tp = int(tp)
if required_tp < tp:
required_tp = tp
required_file_name = filename
file_content = sftp.open(
server_config["remote_directory"] + "/" + required_file_name
).read()
file_content = file_content.decode()
tps = file_content.split("\n")[0]
start_time = tps.split(";")[0]
end_time = tps.split(";")[1]
finally:
# Close the SFTP session and SSH connection
sftp.close()
ssh.close()
return {"start_time": start_time, "end_time": end_time}
@tool.get("/whether_is_abnormal_metric")
def whether_is_abnormal_metric(
start_time: int, end_time: int, metric_name: str = "cpu_usage"
):
interval_time = 5
metric_values = prometheus(
"api/v1/query_range",
{
"query": prometheus_metrics[metric_name],
"start": start_time - interval_time * 60,
"end": end_time + interval_time * 60,
"step": "3",
},
)
# prometheus('api/v1/query_range', {'query': '100 - (avg(irate(node_cpu_seconds_total{instance=~"172.27.58.65:9100",mode="idle"}[1m])) * 100)', 'start': '1684412385', 'end': '1684413285', 'step': '3'})
# print(" === metric_values", metric_values)
if metric_values["data"]["result"] != []:
metric_values = metric_values["data"]["result"][0]["values"]
else:
raise Exception("No metric values found for the given time range")
# is_abnormal = detect_anomalies(np.array([float(value) for _, value in metric_values]))
is_abnormal = True
if is_abnormal:
return "The metric is abnormal"
else:
return "The metric is normal"
@tool.get("/cpu_diagnosis_agent")
def cpu_diagnosis_agent(start_time: int, end_time: int):
# live_tuples\n- dead_tuples\n- table_size
cpu_metrics = prometheus_metrics["cpu_metrics"]
cpu_metrics = cpu_metrics # + find_abnormal_metrics(start_time, end_time, monitoring_metrics, 'cpu')
print("==== cpu_metrics", cpu_metrics)
detailed_cpu_metrics = obtain_values_of_metrics(
start_time, end_time, cpu_metrics
)
docs_str = knowledge_matcher.match(detailed_cpu_metrics)
prompt = """The CPU metric is abnormal. Then obtain the CPU relevant metric values from Prometheus: {}.
Next output the analysis of potential causes of the high CPU usage based on the CPU relevant metric values,
{}""".format(
detailed_cpu_metrics, docs_str
)
print(prompt)
# response = openai.Completion.create(
# model="text-davinci-003",
# prompt=prompt,
# temperature=0,
# max_tokens=1000,
# top_p=1.0,
# frequency_penalty=0.0,
# presence_penalty=0.0,
# stop=["#", ";"]
# )
# output_text = response.choices[0].text.strip()
# Set up the OpenAI GPT-3 model
# model_engine = "gpt-3.5-turbo"
# prompt_response = openai.ChatCompletion.create(
# engine="gpt-3.5-turbo",
# messages=[
# {"role": "assistant", "content": "The table schema is as follows: " + str(schema)},
# {"role": "user", "content": str(prompt)}
# ]
# )
# output_text = prompt_response['choices'][0]['message']['content']
llm = CustomLLM()
output_analysis = llm(prompt)
return {"diagnose": output_analysis, "knowledge": docs_str}
@tool.get("/memory_diagnosis_agent")
def memory_diagnosis_agent(start_time: int, end_time: int):
memory_metrics = prometheus_metrics["memory_metrics"]
memory_metrics = prometheus_metrics["memory_metrics"]
memory_metrics = memory_metrics # + find_abnormal_metrics(start_time, end_time, monitoring_metrics, 'memory')
detailed_memory_metrics = obtain_values_of_metrics(
start_time, end_time, memory_metrics
)
openai.api_key = os.environ["OPENAI_API_KEY"]
db = Database(dbargs, timeout=-1)
slow_queries = db.obtain_historical_slow_queries()
slow_query_state = ""
for i, query in enumerate(slow_queries):
slow_query_state += str(i + 1) + ". " + str(query) + "\n"
print(slow_query_state)
# TODO: need a similarity match function to match the top-K examples
# 1. get the categories of incoming metrics. Such as "The abnormal metrics include A, B, C, D"
# 2. embedding the metrics
# note: 这个metrics的embedding有可能预计算吗?如果metrics的种类(组合数)有限的话
# 3. match the top-K examples(embedding)
# note: 不用embedding如何有效的筛选出来与当前metrics最相关的example呢?可以枚举吗?比如如果我知道某一个example涉及到哪些metrics?
# 该如何判断某一个metrics跟一段文本是相关的呢?能否用一个模型来判断一段文本涉及到哪些metrics呢?重新训练的话感觉需要很多样本才行
# 能不能用关键词数量?
docs_str = knowledge_matcher.match(detailed_memory_metrics)
prompt = """The memory metric is abnormal. Then obtain the memory metric values from Prometheus: {}. The slow queries are:
{}
Output the analysis of potential causes of the high memory usage based on the memory metric values and slow queries, e.g.,
{}
Note: include the important slow queries in the output.
""".format(
detailed_memory_metrics, slow_query_state, docs_str
)
# print(prompt)
# response = openai.Completion.create(
# model="text-davinci-003",
# prompt=prompt,
# temperature=0,
# max_tokens=1000,
# top_p=1.0,
# frequency_penalty=0.0,
# presence_penalty=0.0,
# stop=["#", ";"]
# )
# output_text = response.choices[0].text.strip()
# Set up the OpenAI GPT-3 model
# model_engine = "gpt-3.5-turbo"
# prompt_response = openai.ChatCompletion.create(
# engine="gpt-3.5-turbo",
# messages=[
# {"role": "assistant", "content": "The table schema is as follows: " + str(schema)},
# {"role": "user", "content": str(prompt)}
# ]
# )
# output_text = prompt_response['choices'][0]['message']['content']
llm = CustomLLM()
output_analysis = llm(prompt)
return {"diagnose": output_analysis, "knowledge": docs_str}
return tool
|