Spaces:
Paused
Paused
File size: 1,960 Bytes
6497501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import torch.nn as nn
from ...util import append_dims, instantiate_from_config
class Denoiser(nn.Module):
def __init__(self, weighting_config, scaling_config):
super().__init__()
self.weighting = instantiate_from_config(weighting_config)
self.scaling = instantiate_from_config(scaling_config)
def possibly_quantize_sigma(self, sigma):
return sigma
def possibly_quantize_c_noise(self, c_noise):
return c_noise
def w(self, sigma):
return self.weighting(sigma)
def __call__(self, network, input, sigma, cond):
sigma = self.possibly_quantize_sigma(sigma)
sigma_shape = sigma.shape
sigma = append_dims(sigma, input.ndim)
c_skip, c_out, c_in, c_noise = self.scaling(sigma)
c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape))
return network(input * c_in, c_noise, cond) * c_out + input * c_skip
class DiscreteDenoiser(Denoiser):
def __init__(
self,
weighting_config,
scaling_config,
num_idx,
discretization_config,
do_append_zero=False,
quantize_c_noise=True,
flip=True,
):
super().__init__(weighting_config, scaling_config)
sigmas = instantiate_from_config(discretization_config)(
num_idx, do_append_zero=do_append_zero, flip=flip
)
self.register_buffer("sigmas", sigmas)
self.quantize_c_noise = quantize_c_noise
def sigma_to_idx(self, sigma):
dists = sigma - self.sigmas[:, None]
return dists.abs().argmin(dim=0).view(sigma.shape)
def idx_to_sigma(self, idx):
return self.sigmas[idx]
def possibly_quantize_sigma(self, sigma):
return self.idx_to_sigma(self.sigma_to_idx(sigma))
def possibly_quantize_c_noise(self, c_noise):
if self.quantize_c_noise:
return self.sigma_to_idx(c_noise)
else:
return c_noise
|