File size: 9,558 Bytes
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251f521
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed25868
6497501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from typing import List, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import ListConfig
from torchvision.utils import save_image
from ...util import append_dims, instantiate_from_config


class StandardDiffusionLoss(nn.Module):
    def __init__(
        self,
        sigma_sampler_config,
        type="l2",
        offset_noise_level=0.0,
        batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
    ):
        super().__init__()

        assert type in ["l2", "l1"]

        self.sigma_sampler = instantiate_from_config(sigma_sampler_config)

        self.type = type
        self.offset_noise_level = offset_noise_level

        if not batch2model_keys:
            batch2model_keys = []

        if isinstance(batch2model_keys, str):
            batch2model_keys = [batch2model_keys]

        self.batch2model_keys = set(batch2model_keys)

    def __call__(self, network, denoiser, conditioner, input, batch, *args, **kwarg):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }

        sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = noise + self.offset_noise_level * append_dims(
                torch.randn(input.shape[0], device=input.device), input.ndim
            )
        noised_input = input + noise * append_dims(sigmas, input.ndim)
        model_output = denoiser(
            network, noised_input, sigmas, cond, **additional_model_inputs
        )
        w = append_dims(denoiser.w(sigmas), input.ndim)

        loss = self.get_diff_loss(model_output, input, w)
        loss = loss.mean()
        loss_dict = {"loss": loss}

        return loss, loss_dict

    def get_diff_loss(self, model_output, target, w):
        if self.type == "l2":
            return torch.mean(
                (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
            )
        elif self.type == "l1":
            return torch.mean(
                (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
            )


class FullLoss(StandardDiffusionLoss):

    def __init__(
        self,
        seq_len=12,
        kernel_size=3,
        gaussian_sigma=0.5,
        min_attn_size=16,
        lambda_local_loss=0.0,
        lambda_ocr_loss=0.0,
        ocr_enabled = False,
        predictor_config = None,
        *args, **kwarg
    ):
        super().__init__(*args, **kwarg)

        self.gaussian_kernel_size = kernel_size
        gaussian_kernel = self.get_gaussian_kernel(kernel_size=self.gaussian_kernel_size, sigma=gaussian_sigma, out_channels=seq_len)
        self.register_buffer("g_kernel", gaussian_kernel.requires_grad_(False))

        self.min_attn_size = min_attn_size
        self.lambda_local_loss = lambda_local_loss
        self.lambda_ocr_loss = lambda_ocr_loss

        self.ocr_enabled = ocr_enabled
        if ocr_enabled:
            self.predictor = instantiate_from_config(predictor_config)
    
    def get_gaussian_kernel(self, kernel_size=3, sigma=1, out_channels=3):
        # Create a x, y coordinate grid of shape (kernel_size, kernel_size, 2)
        x_coord = torch.arange(kernel_size)
        x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size)
        y_grid = x_grid.t()
        xy_grid = torch.stack([x_grid, y_grid], dim=-1).float()

        mean = (kernel_size - 1)/2.
        variance = sigma**2.

        # Calculate the 2-dimensional gaussian kernel which is
        # the product of two gaussian distributions for two different
        # variables (in this case called x and y)
        gaussian_kernel = (1./(2.*torch.pi*variance)) *\
                        torch.exp(
                            -torch.sum((xy_grid - mean)**2., dim=-1) /\
                            (2*variance)
                        )

        # Make sure sum of values in gaussian kernel equals 1.
        gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)

        # Reshape to 2d depthwise convolutional weight
        gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size)
        gaussian_kernel = gaussian_kernel.tile(out_channels, 1, 1, 1)
        
        return gaussian_kernel

    def __call__(self, network, denoiser, conditioner, input, batch, first_stage_model, scaler):

        cond = conditioner(batch)

        sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = noise + self.offset_noise_level * append_dims(
                torch.randn(input.shape[0], device=input.device), input.ndim
            )

        noised_input = input + noise * append_dims(sigmas, input.ndim)
        model_output = denoiser(network, noised_input, sigmas, cond)
        w = append_dims(denoiser.w(sigmas), input.ndim)

        diff_loss = self.get_diff_loss(model_output, input, w)
        local_loss = self.get_local_loss(network.diffusion_model.attn_map_cache, batch["seg"], batch["seg_mask"])
        diff_loss = diff_loss.mean()
        local_loss = local_loss.mean()

        if self.ocr_enabled:
            ocr_loss = self.get_ocr_loss(model_output, batch["r_bbox"], batch["label"], first_stage_model, scaler)
            ocr_loss = ocr_loss.mean()

        loss = diff_loss + self.lambda_local_loss * local_loss
        if self.ocr_enabled:
            loss += self.lambda_ocr_loss * ocr_loss

        loss_dict = {
            "loss/diff_loss": diff_loss,
            "loss/local_loss": local_loss,
            "loss/full_loss": loss
        }

        if self.ocr_enabled:
            loss_dict["loss/ocr_loss"] = ocr_loss

        return loss, loss_dict
    
    def get_ocr_loss(self, model_output, r_bbox, label, first_stage_model, scaler):

        model_output = 1 / scaler * model_output
        model_output_decoded = first_stage_model.decode(model_output)
        model_output_crops = []
        
        for i, bbox in enumerate(r_bbox):
            m_top, m_bottom, m_left, m_right = bbox
            model_output_crops.append(model_output_decoded[i, :, m_top:m_bottom, m_left:m_right])

        loss = self.predictor.calc_loss(model_output_crops, label)

        return loss

    def get_min_local_loss(self, attn_map_cache, mask, seg_mask):

        loss = 0
        count = 0

        for item in attn_map_cache:

            heads = item["heads"]
            size = item["size"]
            attn_map = item["attn_map"]

            if size < self.min_attn_size: continue

            seg_l = seg_mask.shape[1]

            bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
            attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
            
            assert seg_l <= l
            attn_map = attn_map[..., :seg_l]
            attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
            attn_map = attn_map.mean(dim = 1) # b, l, n

            attn_map = attn_map.reshape((-1, seg_l, size, size)) # b, l, s, s
            attn_map = F.conv2d(attn_map, self.g_kernel, padding = self.gaussian_kernel_size//2, groups=seg_l) # gaussian blur on each channel
            attn_map = attn_map.reshape((-1, seg_l, n)) # b, l, n
            
            mask_map = F.interpolate(mask, (size, size))
            mask_map = mask_map.tile((1, seg_l, 1, 1))
            mask_map = mask_map.reshape((-1, seg_l, n)) # b, l, n

            p_loss = (mask_map * attn_map).max(dim = -1)[0] # b, l
            p_loss = p_loss + (1 - seg_mask) # b, l
            p_loss = p_loss.min(dim = -1)[0] # b,

            loss += -p_loss
            count += 1

        loss = loss / count

        return loss

    def get_local_loss(self, attn_map_cache, seg, seg_mask):

        loss = 0
        count = 0

        for item in attn_map_cache:

            heads = item["heads"]
            size = item["size"]
            attn_map = item["attn_map"]

            if size < self.min_attn_size: continue

            seg_l = seg_mask.shape[1]

            bh, n, l = attn_map.shape # bh: batch size * heads / n : pixel length(h*w) / l: token length
            attn_map = attn_map.reshape((-1, heads, n, l)) # b, h, n, l
            
            assert seg_l <= l
            attn_map = attn_map[..., :seg_l]
            attn_map = attn_map.permute(0, 1, 3, 2) # b, h, l, n
            attn_map = attn_map.mean(dim = 1) # b, l, n

            attn_map = attn_map.reshape((-1, seg_l, size, size)) # b, l, s, s
            attn_map = F.conv2d(attn_map, self.g_kernel, padding = self.gaussian_kernel_size//2, groups=seg_l) # gaussian blur on each channel
            attn_map = attn_map.reshape((-1, seg_l, n)) # b, l, n

            seg_map = F.interpolate(seg, (size, size))
            seg_map = seg_map.reshape((-1, seg_l, n)) # b, l, n
            n_seg_map = 1 - seg_map

            p_loss = (seg_map * attn_map).max(dim = -1)[0] # b, l
            n_loss = (n_seg_map * attn_map).max(dim = -1)[0] # b, l

            p_loss = p_loss * seg_mask # b, l
            n_loss = n_loss * seg_mask # b, l

            p_loss = p_loss.sum(dim = -1) / seg_mask.sum(dim = -1) # b,
            n_loss = n_loss.sum(dim = -1) / seg_mask.sum(dim = -1) # b,

            f_loss = n_loss - p_loss # b,
            loss += f_loss
            count += 1

        loss = loss / count

        return loss