File size: 8,371 Bytes
9667e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

import os
import cv2
import math
import numpy as np
from PIL import Image

import torch
import torchvision.transforms.functional as F

class DemoDataset(object):
    def __init__(self):
        super().__init__()    
        self.LIMBSEQ = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
                [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
                [1, 16], [16, 18], [3, 17], [6, 18]]

        self.COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
                [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
                [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
        
        self.LIMBSEQ_hands = [[0, 1], [1, 2], [2, 3], [3, 4], \
            [0, 5], [5, 6], [6, 7], [7, 8], \
            [0, 9], [9, 10], [10, 11], [11, 12], \
            [0, 13], [13, 14], [14, 15], [15, 16], \
            [0, 17], [17, 18], [18, 19], [19, 20], \
            [21, 22], [22, 23], [23, 24], [24, 25], \
            [21, 26], [26, 27], [27, 28], [28, 29], \
            [21, 30], [30, 31], [31, 32], [32, 33], \
            [21, 34], [34, 35], [35, 36], [36, 37], \
            [21, 38], [38, 39], [39, 40], [40, 41]]
        
        self.COLORS_hands = [[85, 0, 0], [170, 0, 0], [85, 85, 0], [85, 170, 0], [170, 85, 0], [170, 170, 0], [85, 85, 85], \
            [85, 85, 170], [85, 170, 85], [85, 170, 170], [0, 85, 0], [0, 170, 0], [0, 85, 85], [0, 85, 170], \
            [0, 170, 85], [0, 170, 170], [50, 0, 0], [135, 0, 0], [50, 50, 0], [50, 135, 0], [135, 50, 0], \
            [135, 135, 0], [50, 50, 50], [50, 50, 135], [50, 135, 50], [50, 135, 135], [0, 50, 0], [0, 135, 0], \
            [0, 50, 50], [0, 50, 135], [0, 135, 50], [0, 135, 135], [100, 0, 0], [200, 0, 0], [100, 100, 0], \
            [100, 200, 0], [200, 100, 0], [200, 200, 0], [100, 100, 100], [100, 100, 200], [100, 200, 100], [100, 200, 200]
            ]
        
        self.img_size = tuple([512, 352])
    
    def load_item(self, img, pose, handpose=None):

        reference_img = self.get_image_tensor(img)[None,:]
        label, ske = self.get_label_tensor(pose, handpose)
        label = label[None,:]

        return {'reference_image':reference_img, 'target_skeleton':label, 'skeleton_img': ske}
    
    def get_image_tensor(self, bgr_img):
        img = Image.fromarray(cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB))
        img = F.resize(img, self.img_size)
        img = F.to_tensor(img)
        img = F.normalize(img, (0.5, 0.5, 0.5),(0.5, 0.5, 0.5))
        return img    

    def get_label_tensor(self, pose, hand_pose=None):
        canvas = np.zeros((self.img_size[0], self.img_size[1], 3)).astype(np.uint8)
        keypoint = np.array(pose)
        if hand_pose is not None:
            keypoint_hands = np.array(hand_pose)
        else:
            keypoint_hands = None
        
        # keypoint = self.trans_keypoins(keypoint)
        
        stickwidth = 4
        for i in range(18):
            x, y = keypoint[i, 0:2]
            if x == -1 or y == -1:
                continue
            cv2.circle(canvas, (int(x), int(y)), 4, self.COLORS[i], thickness=-1)
        if keypoint_hands is not None:
            for i in range(42):
                    x, y = keypoint_hands[i, 0:2]
                    if x == -1 or y == -1:
                        continue
                    cv2.circle(canvas, (int(x), int(y)), 4, self.COLORS_hands[i], thickness=-1)
        
        joints = []
        for i in range(17):
            Y = keypoint[np.array(self.LIMBSEQ[i])-1, 0]
            X = keypoint[np.array(self.LIMBSEQ[i])-1, 1]            
            cur_canvas = canvas.copy()
            if -1 in Y or -1 in X:
                joints.append(np.zeros_like(cur_canvas[:, :, 0]))
                continue
            mX = np.mean(X)
            mY = np.mean(Y)
            length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
            polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            cv2.fillConvexPoly(cur_canvas, polygon, self.COLORS[i])
            canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

            joint = np.zeros_like(cur_canvas[:, :, 0])
            cv2.fillConvexPoly(joint, polygon, 255)
            joint = cv2.addWeighted(joint, 0.4, joint, 0.6, 0)
            joints.append(joint)
        if keypoint_hands is not None:
            for i in range(40):
                    Y = keypoint_hands[np.array(self.LIMBSEQ_hands[i]), 0]
                    X = keypoint_hands[np.array(self.LIMBSEQ_hands[i]), 1]            
                    cur_canvas = canvas.copy()
                    if -1 in Y or -1 in X:
                        if (i+1) % 4 == 0:
                            joints.append(np.zeros_like(cur_canvas[:, :, 0]))
                        continue
                    mX = np.mean(X)
                    mY = np.mean(Y)
                    length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
                    angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
                    polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), int(stickwidth/2)), int(angle), 0, 360, 1)
                    cv2.fillConvexPoly(cur_canvas, polygon, self.COLORS_hands[i])
                    canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
                    
                    # 一根手指一个通道
                    if i % 4 == 0:
                        joint = np.zeros_like(cur_canvas[:, :, 0])
                    cv2.fillConvexPoly(joint, polygon, 255)
                    joint = cv2.addWeighted(joint, 0.4, joint, 0.6, 0)
                    if (i+1) % 4 == 0:
                        joints.append(joint)
        
        pose = F.to_tensor(Image.fromarray(cv2.cvtColor(canvas, cv2.COLOR_BGR2RGB)))
        
        tensors_dist = 0
        e = 1
        for i in range(len(joints)):
            im_dist = cv2.distanceTransform(255-joints[i], cv2.DIST_L1, 3)
            im_dist = np.clip((im_dist / 3), 0, 255).astype(np.uint8)
            tensor_dist = F.to_tensor(Image.fromarray(im_dist))
            tensors_dist = tensor_dist if e == 1 else torch.cat([tensors_dist, tensor_dist])
            e += 1

        label_tensor = torch.cat((pose, tensors_dist), dim=0)
            
        return label_tensor, canvas     
    
    def tensor2im(self, image_tensor, imtype=np.uint8, normalize=True,
              three_channel_output=True):
        r"""Convert tensor to image.

        Args:
            image_tensor (torch.tensor or list of torch.tensor): If tensor then
                (NxCxHxW) or (NxTxCxHxW) or (CxHxW).
            imtype (np.dtype): Type of output image.
            normalize (bool): Is the input image normalized or not?
                three_channel_output (bool): Should single channel images be made 3
                channel in output?

        Returns:
            (numpy.ndarray, list if case 1, 2 above).
        """
        if image_tensor is None:
            return None
        if isinstance(image_tensor, list):
            return [self.tensor2im(x, imtype, normalize) for x in image_tensor]
        if image_tensor.dim() == 5 or image_tensor.dim() == 4:
            return [self.tensor2im(image_tensor[idx], imtype, normalize)
                    for idx in range(image_tensor.size(0))]

        if image_tensor.dim() == 3:
            image_numpy = image_tensor.detach().float().numpy()
            if normalize:
                image_numpy = (np.transpose(
                    image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
            else:
                image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
            image_numpy = np.clip(image_numpy, 0, 255)
            if image_numpy.shape[2] == 1 and three_channel_output:
                image_numpy = np.repeat(image_numpy, 3, axis=2)
            elif image_numpy.shape[2] > 3:
                image_numpy = image_numpy[:, :, :3]
            return image_numpy.astype(imtype)

    def trans_keypoins(self, keypoints):
        missing_keypoint_index = keypoints == -1

        keypoints[missing_keypoint_index] = -1
        return keypoints