File size: 12,730 Bytes
9667e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import sys
import math

import torch
from torch import nn
from torch.nn import functional as F

from NTED.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix

class ExtractionOperation(nn.Module):
    def __init__(self, in_channel, num_label, match_kernel):
        super(ExtractionOperation, self).__init__()
        self.value_conv = EqualConv2d(in_channel, in_channel, match_kernel, 1, match_kernel//2, bias=True)
        self.semantic_extraction_filter = EqualConv2d(in_channel, num_label, match_kernel, 1, match_kernel//2, bias=False)

        self.softmax = nn.Softmax(dim=-1)
        self.num_label = num_label

    def forward(self, value, recoder):
        key = value
        b,c,h,w = value.shape
        key = self.semantic_extraction_filter(self.feature_norm(key))
        extraction_softmax = self.softmax(key.view(b, -1, h*w)) #bkm
        values_flatten = self.value_conv(value).view(b, -1, h*w)
        neural_textures = torch.einsum('bkm,bvm->bvk', extraction_softmax, values_flatten)
        recoder['extraction_softmax'].insert(0, extraction_softmax)
        recoder['neural_textures'].insert(0, neural_textures)
        return neural_textures, extraction_softmax


    def feature_norm(self, input_tensor):
        input_tensor = input_tensor - input_tensor.mean(dim=1, keepdim=True)
        norm = torch.norm(input_tensor, 2, 1, keepdim=True) + sys.float_info.epsilon
        out = torch.div(input_tensor, norm)
        return out   

class DistributionOperation(nn.Module):
    def __init__(self, num_label, input_dim, match_kernel=3):
        super(DistributionOperation, self).__init__()
        self.semantic_distribution_filter = EqualConv2d(input_dim, num_label, 
                                    kernel_size=match_kernel, 
                                    stride=1,
                                    padding=match_kernel//2)
        self.num_label = num_label

    def forward(self, query, extracted_feature, recoder):
        b,c,h,w = query.shape

        query = self.semantic_distribution_filter(query) 
        query_flatten = query.view(b, self.num_label, -1)
        query_softmax = F.softmax(query_flatten, 1)
        values_q = torch.einsum('bkm,bkv->bvm', query_softmax, extracted_feature.permute(0,2,1))
        attn_out = values_q.view(b,-1,h,w)  
        recoder['semantic_distribution'].append(query)
        return attn_out

class EncoderLayer(nn.Sequential):
    def __init__(
        self,
        in_channel,
        out_channel,
        kernel_size,
        downsample=False,
        blur_kernel=[1, 3, 3, 1],
        bias=True,
        activate=True,
        use_extraction=False,
        num_label=None, 
        match_kernel=None,
        num_extractions=2
    ):
        super().__init__()

        if downsample:
            factor = 2
            p = (len(blur_kernel) - factor) + (kernel_size - 1)
            pad0 = (p + 1) // 2
            pad1 = p // 2
            self.blur = Blur(blur_kernel, pad=(pad0, pad1))

            stride = 2
            padding = 0

        else:
            self.blur = None
            stride = 1
            padding = kernel_size // 2

        
        self.conv = EqualConv2d(
                in_channel,
                out_channel,
                kernel_size,
                padding=padding,
                stride=stride,
                bias=bias and not activate,
            )

        self.activate = FusedLeakyReLU(out_channel, bias=bias) if activate else None
        self.use_extraction = use_extraction
        if self.use_extraction:
            self.extraction_operations = nn.ModuleList()
            for _ in range(num_extractions):
                self.extraction_operations.append(
                    ExtractionOperation(
                        out_channel, 
                        num_label, 
                        match_kernel
                    )
                )

    def forward(self, input, recoder=None):
        out = self.blur(input) if self.blur is not None else input
        out = self.conv(out) 
        out = self.activate(out) if self.activate is not None else out
        if self.use_extraction:
            for extraction_operation in self.extraction_operations:
                extraction_operation(out, recoder)
        return out


class DecoderLayer(nn.Module):
    def __init__(
        self,
        in_channel,
        out_channel,
        kernel_size,
        upsample=False,
        blur_kernel=[1, 3, 3, 1],
        bias=True,
        activate=True,    
        use_distribution=True, 
        num_label=16,
        match_kernel=3,
    ):
        super().__init__()
        if upsample:
            factor = 2
            p = (len(blur_kernel) - factor) - (kernel_size - 1)
            pad0 = (p + 1) // 2 + factor - 1
            pad1 = p // 2 + 1

            self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
            self.conv = EqualTransposeConv2d(
                in_channel, 
                out_channel, 
                kernel_size, 
                stride=2, 
                padding=0, 
                bias=bias and not activate,
            )
        else:
            self.conv = EqualConv2d(
                in_channel, 
                out_channel, 
                kernel_size, 
                stride=1, 
                padding=kernel_size//2,
                bias=bias and not activate,
            )
            self.blur = None

        self.distribution_operation = DistributionOperation(
            num_label, 
            out_channel, 
            match_kernel=match_kernel
        ) if use_distribution else None
        self.activate = FusedLeakyReLU(out_channel, bias=bias) if activate else None
        self.use_distribution = use_distribution

    def forward(self, input, neural_texture=None, recoder=None):
        out = self.conv(input)
        out = self.blur(out) if self.blur is not None else out
        if self.use_distribution and neural_texture is not None:
            out_attn = self.distribution_operation(out, neural_texture, recoder)
            out = (out + out_attn) / math.sqrt(2)     

        out = self.activate(out.contiguous()) if self.activate is not None else out
        
        return out        

class EqualConv2d(nn.Module):
    def __init__(
        self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
    ):
        super().__init__()

        self.weight = nn.Parameter(
            torch.randn(out_channel, in_channel, kernel_size, kernel_size)
        )
        self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

        self.stride = stride
        self.padding = padding

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channel))

        else:
            self.bias = None

    def forward(self, input):
        out = conv2d_gradfix.conv2d(
            input,
            self.weight * self.scale,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
        )

        return out

    def __repr__(self):
        return (
            f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
            f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
        )


class EqualTransposeConv2d(nn.Module):
    def __init__(
        self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
    ):
        super().__init__()

        self.weight = nn.Parameter(
            torch.randn(out_channel, in_channel, kernel_size, kernel_size)
        )
        self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)

        self.stride = stride
        self.padding = padding

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channel))

        else:
            self.bias = None

    def forward(self, input):
        weight = self.weight.transpose(0,1)
        out = conv2d_gradfix.conv_transpose2d(
            input,
            weight * self.scale,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
        )

        return out

    def __repr__(self):
        return (
            f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
            f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
        )

class ToRGB(nn.Module):
    def __init__(
        self, 
        in_channel, 
        upsample=True, 
        blur_kernel=[1, 3, 3, 1]
        ):
        super().__init__()

        if upsample:
            self.upsample = Upsample(blur_kernel)
        self.conv = EqualConv2d(in_channel, 3, 3, stride=1, padding=1)

    def forward(self, input, skip=None):
        out = self.conv(input)
        if skip is not None:
            skip = self.upsample(skip)
            out = out + skip
        return out


class EqualLinear(nn.Module):
    def __init__(
        self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
    ):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))

        else:
            self.bias = None

        self.activation = activation

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):
        if self.activation:
            out = F.linear(input, self.weight * self.scale)
            out = fused_leaky_relu(out, self.bias * self.lr_mul)

        else:
            out = F.linear(
                input, self.weight * self.scale, bias=self.bias * self.lr_mul
            )

        return out

    def __repr__(self):
        return (
            f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
        )        

class Upsample(nn.Module):
    def __init__(self, kernel, factor=2):
        super().__init__()

        self.factor = factor
        kernel = make_kernel(kernel) * (factor ** 2)
        self.register_buffer("kernel", kernel)

        p = kernel.shape[0] - factor

        pad0 = (p + 1) // 2 + factor - 1
        pad1 = p // 2

        self.pad = (pad0, pad1)

    def forward(self, input):
        out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)

        return out

class ResBlock(nn.Module):
    def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
        super().__init__()

        self.conv1 = ConvLayer(in_channel, in_channel, 3)
        self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)

        self.skip = ConvLayer(
            in_channel, out_channel, 1, downsample=True, activate=False, bias=False
        )

    def forward(self, input):
        out = self.conv1(input)
        out = self.conv2(out)

        skip = self.skip(input)
        out = (out + skip) / math.sqrt(2)

        return out

class ConvLayer(nn.Sequential):
    def __init__(
        self,
        in_channel,
        out_channel,
        kernel_size,
        downsample=False,
        blur_kernel=[1, 3, 3, 1],
        bias=True,
        activate=True,
    ):
        layers = []

        if downsample:
            factor = 2
            p = (len(blur_kernel) - factor) + (kernel_size - 1)
            pad0 = (p + 1) // 2
            pad1 = p // 2

            layers.append(Blur(blur_kernel, pad=(pad0, pad1)))

            stride = 2
            self.padding = 0

        else:
            stride = 1
            self.padding = kernel_size // 2

        layers.append(
            EqualConv2d(
                in_channel,
                out_channel,
                kernel_size,
                padding=self.padding,
                stride=stride,
                bias=bias and not activate,
            )
        )

        if activate:
            layers.append(FusedLeakyReLU(out_channel, bias=bias))

        super().__init__(*layers)


class Blur(nn.Module):
    def __init__(self, kernel, pad, upsample_factor=1):
        super().__init__()

        kernel = make_kernel(kernel)

        if upsample_factor > 1:
            kernel = kernel * (upsample_factor ** 2)

        self.register_buffer("kernel", kernel)

        self.pad = pad

    def forward(self, input):
        out = upfirdn2d(input, self.kernel, pad=self.pad)

        return out


def make_kernel(k):
    k = torch.tensor(k, dtype=torch.float32)

    if k.ndim == 1:
        k = k[None, :] * k[:, None]

    k /= k.sum()

    return k

def accumulate(model1, model2, decay=0.999):
    par1 = dict(model1.named_parameters())
    par2 = dict(model2.named_parameters())

    for k in par1.keys():
        par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay)