Spaces:
Sleeping
Sleeping
File size: 2,880 Bytes
225b06d aa7d3d1 4388810 aa7d3d1 4388810 225b06d 4388810 225b06d 4388810 225b06d 4388810 225b06d aa7d3d1 225b06d 4388810 225b06d 4388810 225b06d 4388810 225b06d 4388810 225b06d 4388810 225b06d 4388810 225b06d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
from transformers import pipeline
# ===============================
# Load only text-generation models (simpler, stable)
# ===============================
models = {
"DistilGPT-2": pipeline("text-generation", model="distilgpt2"),
"GPT2 (Small)": pipeline("text-generation", model="gpt2"),
"DialoGPT-small": pipeline("text-generation", model="microsoft/DialoGPT-small"),
"OPT-350M": pipeline("text-generation", model="facebook/opt-350m"),
"Bloom-560M": pipeline("text-generation", model="bigscience/bloom-560m"),
"GPT-Neo-125M": pipeline("text-generation", model="EleutherAI/gpt-neo-125M"),
"Falcon-RW-1B": pipeline("text-generation", model="tiiuae/falcon-rw-1b"),
}
def compare_models(user_input, max_new_tokens=100, temperature=0.7, top_p=0.95):
results = {}
for name, generator in models.items():
try:
output = generator(
user_input,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)[0]["generated_text"]
results[name] = output
except Exception as e:
results[name] = f"⚠️ Error: {str(e)}"
return [results[m] for m in models.keys()]
# ===============================
# Gradio UI
# ===============================
with gr.Blocks(css="style.css") as demo:
gr.Markdown("## 🤖 Open-Source Model Comparator\n"
"Compare outputs from multiple open-source LLMs side by side.\n"
"These are raw, unfiltered outputs from Hugging Face models.")
with gr.Row():
user_input = gr.Textbox(label="Your prompt", placeholder="Ask something like 'Write a short poem about the stars'...", lines=2)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens")
temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)")
topp = gr.Slider(0.5, 1.0, value=0.95, step=0.05, label="Nucleus sampling (top_p)")
with gr.Row():
outputs = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in models.keys()]
examples = [
["Explain quantum computing in simple terms."],
["Write a haiku about autumn leaves."],
["What are the pros and cons of nuclear energy?"],
["Describe a futuristic city in the year 2200."],
["Write a funny short story about a robot learning to cook."],
]
gr.Examples(examples=examples, inputs=[user_input])
generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp, topp], outputs=outputs)
user_input.submit(compare_models, inputs=[user_input, max_tokens, temp, topp], outputs=outputs)
if __name__ == "__main__":
demo.launch()
|