File size: 12,819 Bytes
38cab0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import functools
import torch
import torch.nn.functional as F

########################Implementations of the functions in the PyTorch3D########################
def quaternion_to_matrix(quaternions):
    r, i, j, k = torch.unbind(quaternions, -1)
    two_s = 2.0 / (quaternions * quaternions).sum(-1)

    o = torch.stack(
        (
            1 - two_s * (j * j + k * k),
            two_s * (i * j - k * r),
            two_s * (i * k + j * r),
            two_s * (i * j + k * r),
            1 - two_s * (i * i + k * k),
            two_s * (j * k - i * r),
            two_s * (i * k - j * r),
            two_s * (j * k + i * r),
            1 - two_s * (i * i + j * j),
        ),
        -1,
    )
    return o.reshape(quaternions.shape[:-1] + (3, 3))


def _copysign(a, b):
    signs_differ = (a < 0) != (b < 0)
    return torch.where(signs_differ, -a, a)


def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
    ret = torch.zeros_like(x)
    positive_mask = x > 0
    ret[positive_mask] = torch.sqrt(x[positive_mask])
    return ret


def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix  shape f{matrix.shape}.")

    batch_dim = matrix.shape[:-2]
    m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
        matrix.reshape(*batch_dim, 9), dim=-1
    )

    q_abs = _sqrt_positive_part(
        torch.stack(
            [
                1.0 + m00 + m11 + m22,
                1.0 + m00 - m11 - m22,
                1.0 - m00 + m11 - m22,
                1.0 - m00 - m11 + m22,
            ],
            dim=-1,
        )
    )

    quat_by_rijk = torch.stack(
        [
            torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
            torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
            torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
            torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
        ],
        dim=-2,
    )

    quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(q_abs.new_tensor(0.1)))

    return quat_candidates[
        F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
    ].reshape(*batch_dim, 4)


def _axis_angle_rotation(axis: str, angle):
    cos = torch.cos(angle)
    sin = torch.sin(angle)
    one = torch.ones_like(angle)
    zero = torch.zeros_like(angle)

    if axis == "X":
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    if axis == "Y":
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    if axis == "Z":
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)

    return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))


def euler_angles_to_matrix(euler_angles, convention: str):
    if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
        raise ValueError("Invalid input euler angles.")
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
    return functools.reduce(torch.matmul, matrices)


def _angle_from_tan(
    axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
):
    i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
    if horizontal:
        i2, i1 = i1, i2
    even = (axis + other_axis) in ["XY", "YZ", "ZX"]
    if horizontal == even:
        return torch.atan2(data[..., i1], data[..., i2])
    if tait_bryan:
        return torch.atan2(-data[..., i2], data[..., i1])
    return torch.atan2(data[..., i2], -data[..., i1])


def _index_from_letter(letter: str):
    if letter == "X":
        return 0
    if letter == "Y":
        return 1
    if letter == "Z":
        return 2


def matrix_to_euler_angles(matrix, convention: str):
    if len(convention) != 3:
        raise ValueError("Convention must have 3 letters.")
    if convention[1] in (convention[0], convention[2]):
        raise ValueError(f"Invalid convention {convention}.")
    for letter in convention:
        if letter not in ("X", "Y", "Z"):
            raise ValueError(f"Invalid letter {letter} in convention string.")
    if matrix.size(-1) != 3 or matrix.size(-2) != 3:
        raise ValueError(f"Invalid rotation matrix  shape f{matrix.shape}.")
    i0 = _index_from_letter(convention[0])
    i2 = _index_from_letter(convention[2])
    tait_bryan = i0 != i2
    if tait_bryan:
        central_angle = torch.asin(
            matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
        )
    else:
        central_angle = torch.acos(matrix[..., i0, i0])

    o = (
        _angle_from_tan(
            convention[0], convention[1], matrix[..., i2], False, tait_bryan
        ),
        central_angle,
        _angle_from_tan(
            convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
        ),
    )
    return torch.stack(o, -1)


def standardize_quaternion(quaternions):
    return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)


def quaternion_raw_multiply(a, b):
    aw, ax, ay, az = torch.unbind(a, -1)
    bw, bx, by, bz = torch.unbind(b, -1)
    ow = aw * bw - ax * bx - ay * by - az * bz
    ox = aw * bx + ax * bw + ay * bz - az * by
    oy = aw * by - ax * bz + ay * bw + az * bx
    oz = aw * bz + ax * by - ay * bx + az * bw
    return torch.stack((ow, ox, oy, oz), -1)


def quaternion_multiply(a, b):
    ab = quaternion_raw_multiply(a, b)
    return standardize_quaternion(ab)


def quaternion_invert(quaternion):
    return quaternion * quaternion.new_tensor([1, -1, -1, -1])


def quaternion_apply(quaternion, point):
    if point.size(-1) != 3:
        raise ValueError(f"Points are not in 3D, f{point.shape}.")
    real_parts = point.new_zeros(point.shape[:-1] + (1,))
    point_as_quaternion = torch.cat((real_parts, point), -1)
    out = quaternion_raw_multiply(
        quaternion_raw_multiply(quaternion, point_as_quaternion),
        quaternion_invert(quaternion),
    )
    return out[..., 1:]


def axis_angle_to_matrix(axis_angle):
    return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))


def matrix_to_axis_angle(matrix):
    return quaternion_to_axis_angle(matrix_to_quaternion(matrix))


def axis_angle_to_quaternion(axis_angle):
    angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
    half_angles = 0.5 * angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    quaternions = torch.cat(
        [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
    )
    return quaternions


def quaternion_to_axis_angle(quaternions):
    norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
    half_angles = torch.atan2(norms, quaternions[..., :1])
    angles = 2 * half_angles
    eps = 1e-6
    small_angles = angles.abs() < eps
    sin_half_angles_over_angles = torch.empty_like(angles)
    sin_half_angles_over_angles[~small_angles] = (
        torch.sin(half_angles[~small_angles]) / angles[~small_angles]
    )
    # for x small, sin(x/2) is about x/2 - (x/2)^3/6
    # so sin(x/2)/x is about 1/2 - (x*x)/48
    sin_half_angles_over_angles[small_angles] = (
        0.5 - (angles[small_angles] * angles[small_angles]) / 48
    )
    return quaternions[..., 1:] / sin_half_angles_over_angles


def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = F.normalize(a1, dim=-1)
    b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
    b2 = F.normalize(b2, dim=-1)
    b3 = torch.cross(b1, b2, dim=-1)
    return torch.stack((b1, b2, b3), dim=-2)


def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
    return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)


import numpy as np
def rotation_6d_to_matrix_np(d6: np.ndarray) -> np.ndarray:
    a1, a2 = d6[..., :3], d6[..., 3:]
    b1 = a1 / np.linalg.norm(a1, axis=-1, keepdims=True)
    b2 = a2 - np.sum(b1 * a2, axis=-1, keepdims=True) * b1
    b2 = b2 / np.linalg.norm(b2, axis=-1, keepdims=True)
    b3 = np.cross(b1, b2, axis=-1)
    return np.stack((b1, b2, b3), axis=-2)

def matrix_to_rotation_6d_np(matrix: np.ndarray) -> np.ndarray:
    return matrix[..., :2, :].reshape(*matrix.shape[:-2], 6)

########################Implementations of the functions in the PyTorch3D########################



from einops import rearrange
def transform_points(x, mat):
    shape = x.shape
    x = rearrange(x, 'b t (j c) -> b (t j) c', c=3)  # B x N x 3
    x = torch.einsum('bpc,bck->bpk', mat[:, :3, :3], x.permute(0, 2, 1))  # B x 3 x N   N x B x 3
    x = x.permute(2, 0, 1) + mat[:, :3, 3]
    x = x.permute(1, 0, 2)
    x = x.reshape(shape)
    return x


def transform_points_numpy(x, mat):
    shape = x.shape
    x = x.reshape(shape[0], -1, 3)  # b x (t*j) x c
    x = np.einsum('bpc,bck->bpk', mat[:, :3, :3], np.transpose(x, (0, 2, 1)))
    x = np.transpose(x, (2, 0, 1)) + mat[:, :3, 3]
    x = np.transpose(x, (1, 0, 2))
    x = x.reshape(shape)
    return x


def zup_to_yup(coord):
    if len(coord.shape) > 1:
        coord = coord[..., [0, 2, 1]]
        coord[..., 2] *= -1
    else:
        coord = coord[[0, 2, 1]]
        coord[2] *= -1
    return coord


def rigid_transform_3D(A, B, scale=False):
    assert len(A) == len(B)
    N = A.shape[0]  # total points
    centroid_A = np.mean(A, axis=0)
    centroid_B = np.mean(B, axis=0)

    # center the points
    AA = A - np.tile(centroid_A, (N, 1))
    BB = B - np.tile(centroid_B, (N, 1))
    if scale:
        H = np.transpose(BB) * AA / N
    else:
        H = np.transpose(BB) * AA

    U, S, Vt = np.linalg.svd(H)
    R = Vt.T * U.T
    # special reflection case
    if np.linalg.det(R) < 0:
        Vt[2, :] *= -1
        R = Vt.T * U.T

    if scale:
        varA = np.var(A, axis=0).sum()
        c = 1 / (1 / varA * np.sum(S))  # scale factor
        t = -R * (centroid_B.T * c) + centroid_A.T
    else:
        c = 1
        t = -R * centroid_B.T + centroid_A.T

    return c, R, t




##################joints blending######################
@torch.jit.script
def slerp(q0: torch.Tensor, q1: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
    """
    Spherical linear interpolation between two quaternions.

    Args:
        q0: (..., 4) tensor of quaternions
        q1: (..., 4) tensor of quaternions
        t: (..., 1) tensor of interpolation coefficients

    Returns:
        (..., 4) tensor of quaternions
    """
    cos_half_theta = torch.sum(q0 * q1, dim=-1)

    neg_mask = cos_half_theta < 0
    q1 = q1.clone()
    q1[neg_mask] = -q1[neg_mask]
    cos_half_theta = torch.abs(cos_half_theta)
    cos_half_theta = torch.unsqueeze(cos_half_theta, dim=-1)

    half_theta = torch.acos(cos_half_theta)
    sin_half_theta = torch.sqrt(1.0 - cos_half_theta * cos_half_theta)
    
    ratioA = torch.sin((1 - t) * half_theta) / sin_half_theta
    ratioB = torch.sin(t * half_theta) / sin_half_theta

    new_q = ratioA * q0 + ratioB * q1

    new_q = torch.where(torch.abs(sin_half_theta) < 0.001, 0.5 * q0 + 0.5 * q1, new_q)
    new_q = torch.where(torch.abs(cos_half_theta) >= 1, q0, new_q)

    return new_q


def blend_joint_rot_batch(body_pose_1, body_pose_2, t):
    """
    Blend two batches of joint rotations using spherical linear interpolation.

    Args:
        body_pose_1: (batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
        body_pose_2: (batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
        t: (batch_size, 1, num_joints, 1) tensor of interpolation coefficients

    Returns:
        (batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
    """
    shape = body_pose_1.shape
    if len(shape) == 3:
        body_pose_1 = body_pose_1.reshape(shape[0], shape[1], -1, 3)
        body_pose_2 = body_pose_2.reshape(shape[0], shape[1], -1, 3)
    ret = quaternion_to_axis_angle(
        slerp(axis_angle_to_quaternion(body_pose_1), axis_angle_to_quaternion(body_pose_2), t)
    )
    if len(shape) == 3:
        ret = ret.reshape(shape)
        
    return ret