File size: 7,109 Bytes
9632411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torch.nn as nn
import math


class Unet(nn.Module):
    def __init__(
            self,
            dim_model,
            num_heads,
            num_layers,
            dropout_p,
            dim_input,
            dim_output,
            free_p=0.1,
            text_emb=True,
            device='cuda',          
            **kwargs
    ):
        super().__init__()

        # INFO
        self.model_type = "Transformer"
        self.dim_model = dim_model
        self.text_emb = text_emb
        self.dim_input = dim_input
        self.device = device
        try:
            self.Disc = kwargs['Disc']
        except:
            self.Disc = False

        # layers
        self.free_p = free_p
        self.positional_encoder = PositionalEncoding(
            dim_model=dim_model, dropout_p=dropout_p, max_len=5000
        )
        self.embedding_input = nn.Linear(dim_input, dim_model)
        self.embedding_original = nn.Linear(dim_input, dim_model)


        encoder_layer = nn.TransformerEncoderLayer(d_model=dim_model,
                                                   nhead=num_heads,
                                                   dim_feedforward=dim_model*4,
                                                   dropout=dropout_p,
                                                   activation="gelu",
                                                   )

        self.transformer = nn.TransformerEncoder(encoder_layer,
                                                 num_layers=num_layers,
                                                )
        if self.Disc:
            # for discriminator
            self.pred = nn.Sequential(nn.Linear(dim_output, dim_output),
                                  nn.SiLU(inplace=False),
                                  nn.Linear(dim_output, 1),
                                  nn.Sigmoid())
            
        self.out = nn.Linear(dim_model, dim_output)

        self.embed_timestep = TimestepEmbedder(self.dim_model, self.positional_encoder)
        
        if self.text_emb: 
            #for embedding progress indicator
            print("text embedding is enabled!")
            self.positional_encoder_pi = PositionalEncoding(
                dim_model=dim_model, dropout_p=dropout_p, max_len=5000
            )
            self.embed_prog_ind = ProgIndEmbedder(self.dim_model, self.positional_encoder_pi)

    def forward_disc(self, x, timesteps):
        t_emb = self.embed_timestep(timesteps) # t_emb refers to time embedding
        
        x, t_emb = x.permute(1, 0, 2), t_emb.permute(1, 0, 2)
        x = self.embedding_input(x) * math.sqrt(self.dim_model)
    
        x = torch.cat((t_emb, x), dim=0)
        x = self.positional_encoder(x)
        x = self.transformer(x)
        output = self.out(x)[1:]
        output = output.permute(1, 0, 2)
        output = output.mean(dim=1)
        output = self.pred(output)
        return output
    
    def forward_(self, x, timesteps, text_emb=None, prog_ind=None, joints_orig=None): 
        t_emb = self.embed_timestep(timesteps) # t_emb refers to time embedding
        if self.text_emb:
            text_emb = text_emb.unsqueeze(1) # batchsize, 1, 512
            assert text_emb.shape == (x.shape[0], 1, self.dim_model), \
                f'text_emb shape should be (batchsize, 1, {self.dim_model})'
        
        x, joints_orig, t_emb = x.permute(1, 0, 2), joints_orig.permute(1, 0, 2), t_emb.permute(1, 0, 2)
        x = self.embedding_input(x) * math.sqrt(self.dim_model)
        joints_orig = self.embedding_original(joints_orig) * math.sqrt(self.dim_model)
        x = (x + joints_orig) / 2.

        if not self.text_emb:
            x = torch.cat((t_emb, x), dim=0) # (seq_len+1), batchsize, dim_model
        else:
            text_emb = text_emb.permute(1, 0, 2)
            prog_ind = (prog_ind*100).round().to(torch.int64)
            prog_ind_emb = self.embed_prog_ind(prog_ind).permute(1, 0, 2)
            t_emb = (t_emb + text_emb/10.0 + prog_ind_emb) * math.sqrt(self.dim_model)
            x = torch.cat((t_emb, x), dim=0)

        x = self.positional_encoder(x)
        x = self.transformer(x)
        output = self.out(x)[1:]
        output = output.permute(1, 0, 2)
        return output

    def forward(self, x, timesteps, text_emb=None, prog_ind=None, joints_orig=None):
        if self.Disc:
            return self.forward_disc(x, timesteps)
        else:
            return self.forward_(x, timesteps, text_emb, prog_ind, joints_orig)


class PositionalEncoding(nn.Module):
    def __init__(self, dim_model, dropout_p, max_len):
        super().__init__()
        # Modified version from: https://pytorch.org/tutorials/beginner/transformer_tutorial.html
        # max_len determines how far the position can have an effect on a token (window)

        # Info
        self.dropout = nn.Dropout(dropout_p)

        # Encoding - From formula
        pos_encoding = torch.zeros(max_len, dim_model)
        positions_list = torch.arange(0, max_len, dtype=torch.float).reshape(-1, 1)  # 0, 1, 2, 3, 4, 5
        division_term = torch.exp(
            torch.arange(0, dim_model, 2).float() * (-math.log(10000.0)) / dim_model)  # 1000^(2i/dim_model)

        # PE(pos, 2i) = sin(pos/1000^(2i/dim_model))
        pos_encoding[:, 0::2] = torch.sin(positions_list * division_term)

        # PE(pos, 2i + 1) = cos(pos/1000^(2i/dim_model))
        pos_encoding[:, 1::2] = torch.cos(positions_list * division_term)

        # Saving buffer (same as parameter without gradients needed)
        pos_encoding = pos_encoding.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pos_encoding", pos_encoding)

    def forward(self, token_embedding: torch.tensor) -> torch.tensor:
        # Residual connection + pos encoding
        return self.dropout(token_embedding + self.pos_encoding[:token_embedding.size(0), :])


class TimestepEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim),
            nn.SiLU(inplace=False),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

    def forward(self, timesteps):
        return self.time_embed(self.sequence_pos_encoder.pos_encoding[timesteps])#.permute(1, 0, 2)

# totally the same as TimeStepEmbedder
class ProgIndEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim),
            nn.SiLU(inplace=False),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

    def forward(self, timesteps):
        return self.time_embed(self.sequence_pos_encoder.pos_encoding[timesteps])#.permute(1, 0, 2)