Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,001 Bytes
a51c6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from typing import *
from numbers import Number
import importlib
import itertools
import functools
import sys
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
from .dinov2.models.vision_transformer import DinoVisionTransformer
from .utils import wrap_dinov2_attention_with_sdpa, wrap_module_with_gradient_checkpointing, unwrap_module_with_gradient_checkpointing
from ..utils.geometry_torch import normalized_view_plane_uv
class ResidualConvBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int = None,
hidden_channels: int = None,
kernel_size: int = 3,
padding_mode: str = 'replicate',
activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu',
in_norm: Literal['group_norm', 'layer_norm', 'instance_norm', 'none'] = 'layer_norm',
hidden_norm: Literal['group_norm', 'layer_norm', 'instance_norm'] = 'group_norm',
):
super(ResidualConvBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
if hidden_channels is None:
hidden_channels = in_channels
if activation =='relu':
activation_cls = nn.ReLU
elif activation == 'leaky_relu':
activation_cls = functools.partial(nn.LeakyReLU, negative_slope=0.2)
elif activation =='silu':
activation_cls = nn.SiLU
elif activation == 'elu':
activation_cls = nn.ELU
else:
raise ValueError(f'Unsupported activation function: {activation}')
self.layers = nn.Sequential(
nn.GroupNorm(in_channels // 32, in_channels) if in_norm == 'group_norm' else \
nn.GroupNorm(1, in_channels) if in_norm == 'layer_norm' else \
nn.InstanceNorm2d(in_channels) if in_norm == 'instance_norm' else \
nn.Identity(),
activation_cls(),
nn.Conv2d(in_channels, hidden_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode),
nn.GroupNorm(hidden_channels // 32, hidden_channels) if hidden_norm == 'group_norm' else \
nn.GroupNorm(1, hidden_channels) if hidden_norm == 'layer_norm' else \
nn.InstanceNorm2d(hidden_channels) if hidden_norm == 'instance_norm' else\
nn.Identity(),
activation_cls(),
nn.Conv2d(hidden_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode)
)
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if in_channels != out_channels else nn.Identity()
def forward(self, x):
skip = self.skip_connection(x)
x = self.layers(x)
x = x + skip
return x
class DINOv2Encoder(nn.Module):
"Wrapped DINOv2 encoder supporting gradient checkpointing. Input is RGB image in range [0, 1]."
backbone: DinoVisionTransformer
image_mean: torch.Tensor
image_std: torch.Tensor
dim_features: int
def __init__(self, backbone: str, intermediate_layers: Union[int, List[int]], dim_out: int, **deprecated_kwargs):
super(DINOv2Encoder, self).__init__()
self.intermediate_layers = intermediate_layers
# Load the backbone
self.hub_loader = getattr(importlib.import_module(".dinov2.hub.backbones", __package__), backbone)
self.backbone_name = backbone
self.backbone = self.hub_loader(pretrained=False)
self.dim_features = self.backbone.blocks[0].attn.qkv.in_features
self.num_features = intermediate_layers if isinstance(intermediate_layers, int) else len(intermediate_layers)
self.output_projections = nn.ModuleList([
nn.Conv2d(in_channels=self.dim_features, out_channels=dim_out, kernel_size=1, stride=1, padding=0,)
for _ in range(self.num_features)
])
self.register_buffer("image_mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("image_std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def init_weights(self):
pretrained_backbone_state_dict = self.hub_loader(pretrained=True).state_dict()
self.backbone.load_state_dict(pretrained_backbone_state_dict)
def enable_gradient_checkpointing(self):
for i in range(len(self.backbone.blocks)):
wrap_module_with_gradient_checkpointing(self.backbone.blocks[i])
def enable_pytorch_native_sdpa(self):
for i in range(len(self.backbone.blocks)):
wrap_dinov2_attention_with_sdpa(self.backbone.blocks[i].attn)
def forward(self, image: torch.Tensor, token_rows: int, token_cols: int, return_class_token: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
image_14 = F.interpolate(image, (token_rows * 14, token_cols * 14), mode="bilinear", align_corners=False, antialias=True)
image_14 = (image_14 - self.image_mean) / self.image_std
# Get intermediate layers from the backbone
features = self.backbone.get_intermediate_layers(image_14, n=self.intermediate_layers, return_class_token=True)
# Project features to the desired dimensionality
x = torch.stack([
proj(feat.permute(0, 2, 1).unflatten(2, (token_rows, token_cols)).contiguous())
for proj, (feat, clstoken) in zip(self.output_projections, features)
], dim=1).sum(dim=1)
if return_class_token:
return x, features[-1][1]
else:
return x
class Resampler(nn.Sequential):
def __init__(self,
in_channels: int,
out_channels: int,
type_: Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'],
scale_factor: int = 2,
):
if type_ == 'pixel_shuffle':
nn.Sequential.__init__(self,
nn.Conv2d(in_channels, out_channels * (scale_factor ** 2), kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
nn.PixelShuffle(scale_factor),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
)
for i in range(1, scale_factor ** 2):
self[0].weight.data[i::scale_factor ** 2] = self[0].weight.data[0::scale_factor ** 2]
self[0].bias.data[i::scale_factor ** 2] = self[0].bias.data[0::scale_factor ** 2]
elif type_ in ['nearest', 'bilinear']:
nn.Sequential.__init__(self,
nn.Upsample(scale_factor=scale_factor, mode=type_, align_corners=False if type_ == 'bilinear' else None),
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
)
elif type_ == 'conv_transpose':
nn.Sequential.__init__(self,
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=scale_factor, stride=scale_factor),
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
)
self[0].weight.data[:] = self[0].weight.data[:, :, :1, :1]
elif type_ == 'pixel_unshuffle':
nn.Sequential.__init__(self,
nn.PixelUnshuffle(scale_factor),
nn.Conv2d(in_channels * (scale_factor ** 2), out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
)
elif type_ == 'avg_pool':
nn.Sequential.__init__(self,
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
nn.AvgPool2d(kernel_size=scale_factor, stride=scale_factor),
)
elif type_ == 'max_pool':
nn.Sequential.__init__(self,
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
nn.MaxPool2d(kernel_size=scale_factor, stride=scale_factor),
)
else:
raise ValueError(f'Unsupported resampler type: {type_}')
class MLP(nn.Sequential):
def __init__(self, dims: Sequence[int]):
nn.Sequential.__init__(self,
*itertools.chain(*[
(nn.Linear(dim_in, dim_out), nn.ReLU(inplace=True))
for dim_in, dim_out in zip(dims[:-2], dims[1:-1])
]),
nn.Linear(dims[-2], dims[-1]),
)
class ConvStack(nn.Module):
def __init__(self,
dim_in: List[Optional[int]],
dim_res_blocks: List[int],
dim_out: List[Optional[int]],
resamplers: Union[Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'], List],
dim_times_res_block_hidden: int = 1,
num_res_blocks: int = 1,
res_block_in_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'layer_norm',
res_block_hidden_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'group_norm',
activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu',
):
super().__init__()
self.input_blocks = nn.ModuleList([
nn.Conv2d(dim_in_, dim_res_block_, kernel_size=1, stride=1, padding=0) if dim_in_ is not None else nn.Identity()
for dim_in_, dim_res_block_ in zip(dim_in if isinstance(dim_in, Sequence) else itertools.repeat(dim_in), dim_res_blocks)
])
self.resamplers = nn.ModuleList([
Resampler(dim_prev, dim_succ, scale_factor=2, type_=resampler)
for i, (dim_prev, dim_succ, resampler) in enumerate(zip(
dim_res_blocks[:-1],
dim_res_blocks[1:],
resamplers if isinstance(resamplers, Sequence) else itertools.repeat(resamplers)
))
])
self.res_blocks = nn.ModuleList([
nn.Sequential(
*(
ResidualConvBlock(
dim_res_block_, dim_res_block_, dim_times_res_block_hidden * dim_res_block_,
activation=activation, in_norm=res_block_in_norm, hidden_norm=res_block_hidden_norm
) for _ in range(num_res_blocks[i] if isinstance(num_res_blocks, list) else num_res_blocks)
)
) for i, dim_res_block_ in enumerate(dim_res_blocks)
])
self.output_blocks = nn.ModuleList([
nn.Conv2d(dim_res_block_, dim_out_, kernel_size=1, stride=1, padding=0) if dim_out_ is not None else nn.Identity()
for dim_out_, dim_res_block_ in zip(dim_out if isinstance(dim_out, Sequence) else itertools.repeat(dim_out), dim_res_blocks)
])
def enable_gradient_checkpointing(self):
for i in range(len(self.resamplers)):
self.resamplers[i] = wrap_module_with_gradient_checkpointing(self.resamplers[i])
for i in range(len(self.res_blocks)):
for j in range(len(self.res_blocks[i])):
self.res_blocks[i][j] = wrap_module_with_gradient_checkpointing(self.res_blocks[i][j])
def forward(self, in_features: List[torch.Tensor]):
batch_shape = in_features[0].shape[:-3]
in_features = [x.reshape(-1, *x.shape[-3:]) for x in in_features]
out_features = []
for i in range(len(self.res_blocks)):
feature = self.input_blocks[i](in_features[i])
if i == 0:
x = feature
elif feature is not None:
x = x + feature
x = self.res_blocks[i](x)
out_features.append(self.output_blocks[i](x))
if i < len(self.res_blocks) - 1:
x = self.resamplers[i](x)
out_features = [x.unflatten(0, batch_shape) for x in out_features]
return out_features
|