File size: 7,103 Bytes
efc6211
2bec297
 
 
 
 
 
 
 
 
 
b6f766d
2bec297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33db9ac
 
 
 
 
 
 
 
 
 
 
 
 
 
2bec297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
072dcc7
ce57d08
 
 
 
9402145
ce57d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479d45f
2bec297
ce57d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc6211
ce57d08
efc6211
479d45f
2bec297
efc6211
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import os
import numpy as np
import torch
import torchvision.transforms as T
# from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import matplotlib.pyplot as plt
import glob
import spaces

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

# Save the original cuda() method
original_cuda = torch.Tensor.cuda

# Define a new cuda() method
def safe_cuda(self, *args, **kwargs):
    if torch.cuda.is_available():
        return original_cuda(self, *args, **kwargs)  # Use the original cuda() method
    else:
        return self  # Return the tensor itself (stays on CPU)

# Monkey-patch the cuda() method
torch.Tensor.cuda = safe_cuda


model_name = "YuukiAsuna/Vintern-1B-v2-ViTable-docvqa"


model = AutoModel.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).eval().cuda()


tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)



# @spaces.GPU
def chat(message, history):
    print(history)
    print(message)
    if len(history) == 0 or len(message["files"]) != 0:
        test_image = message["files"][0]
    else:
        test_image = history[0][0][0]
        
    pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
    
    
    
    if len(history) == 0:
        question = '<image>\n'+message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
    else:
        conv_history = []
        for chat_pair in history:
            if chat_pair[1] is not None:
                if len(conv_history) == 0 and len(message["files"]) == 0:
                    chat_pair[0] = '<image>\n' + chat_pair[0]
                conv_history.append(tuple(chat_pair))
        print(conv_history)
        if len(message["files"]) != 0:
            question = '<image>\n'+message["text"]
        else:
            question = message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
        
    print(f'User: {question}\nAssistant: {response}')

    return response

CSS ="""
#component-3 {
  height: 50dvh !important;
  transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
  border-style: solid;
  overflow: hidden;
  flex-grow: 1;
  min-width: min(160px, 100%);
  border-width: var(--block-border-width);
}
/* Đảm bảo ảnh bên trong nút hiển thị đúng cách cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] img.svelte-1pijsyv {
  width: 100%;
  object-fit: contain;
  height: 100%;
  border-radius: 13px; /* Thêm bo góc cho ảnh */
  max-width: 50vw;     /* Giới hạn chiều rộng ảnh */
}
/* Đặt chiều cao cho nút và cho phép chọn văn bản chỉ cho các nút có aria-label chỉ định */
button.svelte-1lcyrx4[aria-label="user's message: a file of type image/jpeg, "] {
  user-select: text;
  text-align: left;
  height: 300px;
}
/* Thêm bo góc và giới hạn chiều rộng cho ảnh không thuộc avatar container */
.message-wrap.svelte-1lcyrx4 > div.svelte-1lcyrx4 .svelte-1lcyrx4:not(.avatar-container) img {
  border-radius: 13px;
  max-width: 50vw;
}
.message-wrap.svelte-1lcyrx4 .message.svelte-1lcyrx4 img {
    margin: var(--size-2);
    max-height: 500px;
}
"""


demo = gr.ChatInterface(
    fn=chat,
    description="""Try [Vintern-1B-v2-ViTable-docvqa](https://huggingface.co/YuukiAsuna/Vintern-1B-v2-ViTable-docvqa) in this demo. Vintern-1B-v2-ViTable-docvqa is a finetuned version of [Vintern-1B-v2](https://huggingface.co/5CD-AI/Vintern-1B-v2)""",
    title="Vintern-1B-v2-ViTable-docvqa",
    multimodal=True,
    css=CSS
)
demo.queue().launch()