File size: 7,268 Bytes
2d5f249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

# -*- coding: utf-8 -*-

# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de

import os.path as osp
import numpy as np
from PIL import Image
import torchvision.transforms as transforms


class NormalDataset():
    def __init__(self, cfg, split='train'):

        self.split = split
        self.root = cfg.root
        self.overfit = cfg.overfit

        self.opt = cfg.dataset
        self.datasets = self.opt.types
        self.input_size = self.opt.input_size
        self.set_splits = self.opt.set_splits
        self.scales = self.opt.scales
        self.pifu = self.opt.pifu

        # input data types and dimensions
        self.in_nml = [item[0] for item in cfg.net.in_nml]
        self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
        self.in_total = self.in_nml + ['normal_F', 'normal_B']
        self.in_total_dim = self.in_nml_dim + [3, 3]

        if self.split != 'train':
            self.rotations = range(0, 360, 120)
        else:
            self.rotations = np.arange(0, 360, 360 /
                                       self.opt.rotation_num).astype(np.int)

        self.datasets_dict = {}
        for dataset_id, dataset in enumerate(self.datasets):
            dataset_dir = osp.join(self.root, dataset, "smplx")
            self.datasets_dict[dataset] = {
                "subjects":
                np.loadtxt(osp.join(self.root, dataset, "all.txt"), dtype=str),
                "path":
                dataset_dir,
                "scale":
                self.scales[dataset_id]
            }

        self.subject_list = self.get_subject_list(split)

        # PIL to tensor
        self.image_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

        # PIL to tensor
        self.mask_to_tensor = transforms.Compose([
            transforms.Resize(self.input_size),
            transforms.ToTensor(),
            transforms.Normalize((0.0, ), (1.0, ))
        ])

    def get_subject_list(self, split):

        subject_list = []

        for dataset in self.datasets:

            if self.pifu:
                txt = osp.join(self.root, dataset, f'{split}_pifu.txt')
            else:
                txt = osp.join(self.root, dataset, f'{split}.txt')

            if osp.exists(txt):
                print(f"load from {txt}")
                subject_list += sorted(np.loadtxt(txt, dtype=str).tolist())

                if self.pifu:
                    miss_pifu = sorted(
                        np.loadtxt(osp.join(self.root, dataset,
                                            "miss_pifu.txt"),
                                   dtype=str).tolist())
                    subject_list = [
                        subject for subject in subject_list
                        if subject not in miss_pifu
                    ]
                    subject_list = [
                        "renderpeople/" + subject for subject in subject_list
                    ]

            else:
                train_txt = osp.join(self.root, dataset, 'train.txt')
                val_txt = osp.join(self.root, dataset, 'val.txt')
                test_txt = osp.join(self.root, dataset, 'test.txt')

                print(
                    f"generate lists of [train, val, test] \n {train_txt} \n {val_txt} \n {test_txt} \n"
                )

                split_txt = osp.join(self.root, dataset, f'{split}.txt')

                subjects = self.datasets_dict[dataset]['subjects']
                train_split = int(len(subjects) * self.set_splits[0])
                val_split = int(
                    len(subjects) * self.set_splits[1]) + train_split

                with open(train_txt, "w") as f:
                    f.write("\n".join(dataset + "/" + item
                                      for item in subjects[:train_split]))
                with open(val_txt, "w") as f:
                    f.write("\n".join(
                        dataset + "/" + item
                        for item in subjects[train_split:val_split]))
                with open(test_txt, "w") as f:
                    f.write("\n".join(dataset + "/" + item
                                      for item in subjects[val_split:]))

                subject_list += sorted(
                    np.loadtxt(split_txt, dtype=str).tolist())

        bug_list = sorted(
            np.loadtxt(osp.join(self.root, 'bug.txt'), dtype=str).tolist())

        subject_list = [
            subject for subject in subject_list if (subject not in bug_list)
        ]

        return subject_list

    def __len__(self):
        return len(self.subject_list) * len(self.rotations)

    def __getitem__(self, index):

        # only pick the first data if overfitting
        if self.overfit:
            index = 0

        rid = index % len(self.rotations)
        mid = index // len(self.rotations)

        rotation = self.rotations[rid]

        # choose specific test sets
        subject = self.subject_list[mid]

        subject_render = "/".join(
            [subject.split("/")[0] + "_12views",
             subject.split("/")[1]])

        # setup paths
        data_dict = {
            'dataset':
            subject.split("/")[0],
            'subject':
            subject,
            'rotation':
            rotation,
            'image_path':
            osp.join(self.root, subject_render, 'render',
                     f'{rotation:03d}.png')
        }

        # image/normal/depth loader
        for name, channel in zip(self.in_total, self.in_total_dim):

            if name != 'image':
                data_dict.update({
                    f'{name}_path':
                    osp.join(self.root, subject_render, name,
                             f'{rotation:03d}.png')
                })
            data_dict.update({
                name:
                self.imagepath2tensor(data_dict[f'{name}_path'],
                                      channel,
                                      inv='depth_B' in name)
            })

        path_keys = [
            key for key in data_dict.keys() if '_path' in key or '_dir' in key
        ]
        for key in path_keys:
            del data_dict[key]

        return data_dict

    def imagepath2tensor(self, path, channel=3, inv=False):

        rgba = Image.open(path).convert('RGBA')
        mask = rgba.split()[-1]
        image = rgba.convert('RGB')
        image = self.image_to_tensor(image)
        mask = self.mask_to_tensor(mask)
        image = (image * mask)[:channel]

        return (image * (0.5 - inv) * 2.0).float()