Spaces:
Runtime error
Runtime error
File size: 22,535 Bytes
2d5f249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
from lib.renderer.mesh import load_fit_body
from lib.dataset.hoppeMesh import HoppeMesh
from lib.dataset.body_model import TetraSMPLModel
from lib.common.render import Render
from lib.dataset.mesh_util import SMPLX, projection, cal_sdf_batch, get_visibility
from lib.pare.pare.utils.geometry import rotation_matrix_to_angle_axis
from termcolor import colored
import os.path as osp
import numpy as np
from PIL import Image
import random
import os
import trimesh
import torch
from kaolin.ops.mesh import check_sign
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download, cached_download
class PIFuDataset():
def __init__(self, cfg, split='train', vis=False):
self.split = split
self.root = cfg.root
self.bsize = cfg.batch_size
self.overfit = cfg.overfit
# for debug, only used in visualize_sampling3D
self.vis = vis
self.opt = cfg.dataset
self.datasets = self.opt.types
self.input_size = self.opt.input_size
self.scales = self.opt.scales
self.workers = cfg.num_threads
self.prior_type = cfg.net.prior_type
self.noise_type = self.opt.noise_type
self.noise_scale = self.opt.noise_scale
noise_joints = [4, 5, 7, 8, 13, 14, 16, 17, 18, 19, 20, 21]
self.noise_smpl_idx = []
self.noise_smplx_idx = []
for idx in noise_joints:
self.noise_smpl_idx.append(idx * 3)
self.noise_smpl_idx.append(idx * 3 + 1)
self.noise_smpl_idx.append(idx * 3 + 2)
self.noise_smplx_idx.append((idx-1) * 3)
self.noise_smplx_idx.append((idx-1) * 3 + 1)
self.noise_smplx_idx.append((idx-1) * 3 + 2)
self.use_sdf = cfg.sdf
self.sdf_clip = cfg.sdf_clip
# [(feat_name, channel_num),...]
self.in_geo = [item[0] for item in cfg.net.in_geo]
self.in_nml = [item[0] for item in cfg.net.in_nml]
self.in_geo_dim = [item[1] for item in cfg.net.in_geo]
self.in_nml_dim = [item[1] for item in cfg.net.in_nml]
self.in_total = self.in_geo + self.in_nml
self.in_total_dim = self.in_geo_dim + self.in_nml_dim
if self.split == 'train':
self.rotations = np.arange(
0, 360, 360 / self.opt.rotation_num).astype(np.int32)
else:
self.rotations = range(0, 360, 120)
self.datasets_dict = {}
for dataset_id, dataset in enumerate(self.datasets):
mesh_dir = None
smplx_dir = None
dataset_dir = osp.join(self.root, dataset)
if dataset in ['thuman2']:
mesh_dir = osp.join(dataset_dir, "scans")
smplx_dir = osp.join(dataset_dir, "fits")
smpl_dir = osp.join(dataset_dir, "smpl")
self.datasets_dict[dataset] = {
"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str),
"smplx_dir": smplx_dir,
"smpl_dir": smpl_dir,
"mesh_dir": mesh_dir,
"scale": self.scales[dataset_id]
}
self.subject_list = self.get_subject_list(split)
self.smplx = SMPLX()
# PIL to tensor
self.image_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# PIL to tensor
self.mask_to_tensor = transforms.Compose([
transforms.Resize(self.input_size),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, ))
])
self.device = torch.device(f"cuda:{cfg.gpus[0]}")
self.render = Render(size=512, device=self.device)
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_rgb_image()
def get_subject_list(self, split):
subject_list = []
for dataset in self.datasets:
split_txt = osp.join(self.root, dataset, f'{split}.txt')
if osp.exists(split_txt):
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
else:
full_txt = osp.join(self.root, dataset, 'all.txt')
print(f"split {full_txt} into train/val/test")
full_lst = np.loadtxt(full_txt, dtype=str)
full_lst = [dataset+"/"+item for item in full_lst]
[train_lst, test_lst, val_lst] = np.split(
full_lst, [500, 500+5, ])
np.savetxt(full_txt.replace(
"all", "train"), train_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "test"), test_lst, fmt="%s")
np.savetxt(full_txt.replace("all", "val"), val_lst, fmt="%s")
print(f"load from {split_txt}")
subject_list += np.loadtxt(split_txt, dtype=str).tolist()
if self.split != 'test':
subject_list += subject_list[:self.bsize -
len(subject_list) % self.bsize]
print(colored(f"total: {len(subject_list)}", "yellow"))
random.shuffle(subject_list)
# subject_list = ["thuman2/0008"]
return subject_list
def __len__(self):
return len(self.subject_list) * len(self.rotations)
def __getitem__(self, index):
# only pick the first data if overfitting
if self.overfit:
index = 0
rid = index % len(self.rotations)
mid = index // len(self.rotations)
rotation = self.rotations[rid]
subject = self.subject_list[mid].split("/")[1]
dataset = self.subject_list[mid].split("/")[0]
render_folder = "/".join([dataset +
f"_{self.opt.rotation_num}views", subject])
# setup paths
data_dict = {
'dataset': dataset,
'subject': subject,
'rotation': rotation,
'scale': self.datasets_dict[dataset]["scale"],
'mesh_path': osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}/{subject}.obj"),
'smplx_path': osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}/smplx_param.pkl"),
'smpl_path': osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.pkl"),
'calib_path': osp.join(self.root, render_folder, 'calib', f'{rotation:03d}.txt'),
'vis_path': osp.join(self.root, render_folder, 'vis', f'{rotation:03d}.pt'),
'image_path': osp.join(self.root, render_folder, 'render', f'{rotation:03d}.png')
}
# load training data
data_dict.update(self.load_calib(data_dict))
# image/normal/depth loader
for name, channel in zip(self.in_total, self.in_total_dim):
if f'{name}_path' not in data_dict.keys():
data_dict.update({
f'{name}_path': osp.join(self.root, render_folder, name, f'{rotation:03d}.png')
})
# tensor update
data_dict.update({
name: self.imagepath2tensor(
data_dict[f'{name}_path'], channel, inv=False)
})
data_dict.update(self.load_mesh(data_dict))
data_dict.update(self.get_sampling_geo(
data_dict, is_valid=self.split == "val", is_sdf=self.use_sdf))
data_dict.update(self.load_smpl(data_dict, self.vis))
if self.prior_type == 'pamir':
data_dict.update(self.load_smpl_voxel(data_dict))
if (self.split != 'test') and (not self.vis):
del data_dict['verts']
del data_dict['faces']
if not self.vis:
del data_dict['mesh']
path_keys = [
key for key in data_dict.keys() if '_path' in key or '_dir' in key
]
for key in path_keys:
del data_dict[key]
return data_dict
def imagepath2tensor(self, path, channel=3, inv=False):
rgba = Image.open(path).convert('RGBA')
mask = rgba.split()[-1]
image = rgba.convert('RGB')
image = self.image_to_tensor(image)
mask = self.mask_to_tensor(mask)
image = (image * mask)[:channel]
return (image * (0.5 - inv) * 2.0).float()
def load_calib(self, data_dict):
calib_data = np.loadtxt(data_dict['calib_path'], dtype=float)
extrinsic = calib_data[:4, :4]
intrinsic = calib_data[4:8, :4]
calib_mat = np.matmul(intrinsic, extrinsic)
calib_mat = torch.from_numpy(calib_mat).float()
return {'calib': calib_mat}
def load_mesh(self, data_dict):
mesh_path = data_dict['mesh_path']
scale = data_dict['scale']
mesh_ori = trimesh.load(mesh_path,
skip_materials=True,
process=False,
maintain_order=True)
verts = mesh_ori.vertices * scale
faces = mesh_ori.faces
vert_normals = np.array(mesh_ori.vertex_normals)
face_normals = np.array(mesh_ori.face_normals)
mesh = HoppeMesh(verts, faces, vert_normals, face_normals)
return {
'mesh': mesh,
'verts': torch.as_tensor(mesh.verts).float(),
'faces': torch.as_tensor(mesh.faces).long()
}
def add_noise(self,
beta_num,
smpl_pose,
smpl_betas,
noise_type,
noise_scale,
type,
hashcode):
np.random.seed(hashcode)
if type == 'smplx':
noise_idx = self.noise_smplx_idx
else:
noise_idx = self.noise_smpl_idx
if 'beta' in noise_type and noise_scale[noise_type.index("beta")] > 0.0:
smpl_betas += (np.random.rand(beta_num) -
0.5) * 2.0 * noise_scale[noise_type.index("beta")]
smpl_betas = smpl_betas.astype(np.float32)
if 'pose' in noise_type and noise_scale[noise_type.index("pose")] > 0.0:
smpl_pose[noise_idx] += (
np.random.rand(len(noise_idx)) -
0.5) * 2.0 * np.pi * noise_scale[noise_type.index("pose")]
smpl_pose = smpl_pose.astype(np.float32)
if type == 'smplx':
return torch.as_tensor(smpl_pose[None, ...]), torch.as_tensor(smpl_betas[None, ...])
else:
return smpl_pose, smpl_betas
def compute_smpl_verts(self, data_dict, noise_type=None, noise_scale=None):
dataset = data_dict['dataset']
smplx_dict = {}
smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True)
smplx_pose = smplx_param["body_pose"] # [1,63]
smplx_betas = smplx_param["betas"] # [1,10]
smplx_pose, smplx_betas = self.add_noise(
smplx_betas.shape[1],
smplx_pose[0],
smplx_betas[0],
noise_type,
noise_scale,
type='smplx',
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))
smplx_out, _ = load_fit_body(fitted_path=data_dict['smplx_path'],
scale=self.datasets_dict[dataset]['scale'],
smpl_type='smplx',
smpl_gender='male',
noise_dict=dict(betas=smplx_betas, body_pose=smplx_pose))
smplx_dict.update({"type": "smplx",
"gender": 'male',
"body_pose": torch.as_tensor(smplx_pose),
"betas": torch.as_tensor(smplx_betas)})
return smplx_out.vertices, smplx_dict
def compute_voxel_verts(self,
data_dict,
noise_type=None,
noise_scale=None):
smpl_param = np.load(data_dict['smpl_path'], allow_pickle=True)
smplx_param = np.load(data_dict['smplx_path'], allow_pickle=True)
smpl_pose = rotation_matrix_to_angle_axis(
torch.as_tensor(smpl_param['full_pose'][0])).numpy()
smpl_betas = smpl_param["betas"]
smpl_path = cached_download(osp.join(self.smplx.model_dir, "smpl/SMPL_MALE.pkl"), use_auth_token=os.environ['ICON'])
tetra_path = cached_download(osp.join(self.smplx.tedra_dir,
"tetra_male_adult_smpl.npz"), use_auth_token=os.environ['ICON'])
smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
smpl_pose, smpl_betas = self.add_noise(
smpl_model.beta_shape[0],
smpl_pose.flatten(),
smpl_betas[0],
noise_type,
noise_scale,
type='smpl',
hashcode=(hash(f"{data_dict['subject']}_{data_dict['rotation']}")) % (10**8))
smpl_model.set_params(pose=smpl_pose.reshape(-1, 3),
beta=smpl_betas,
trans=smpl_param["transl"])
verts = (np.concatenate([smpl_model.verts, smpl_model.verts_added],
axis=0) * smplx_param["scale"] + smplx_param["translation"]
) * self.datasets_dict[data_dict['dataset']]['scale']
faces = np.loadtxt(cached_download(osp.join(self.smplx.tedra_dir, "tetrahedrons_male_adult.txt"), use_auth_token=os.environ['ICON']),
dtype=np.int32) - 1
pad_v_num = int(8000 - verts.shape[0])
pad_f_num = int(25100 - faces.shape[0])
verts = np.pad(verts, ((0, pad_v_num), (0, 0)),
mode='constant',
constant_values=0.0).astype(np.float32)
faces = np.pad(faces, ((0, pad_f_num), (0, 0)),
mode='constant',
constant_values=0.0).astype(np.int32)
return verts, faces, pad_v_num, pad_f_num
def load_smpl(self, data_dict, vis=False):
smplx_verts, smplx_dict = self.compute_smpl_verts(
data_dict, self.noise_type,
self.noise_scale) # compute using smpl model
smplx_verts = projection(smplx_verts, data_dict['calib']).float()
smplx_faces = torch.as_tensor(self.smplx.faces).long()
smplx_vis = torch.load(data_dict['vis_path']).float()
smplx_cmap = torch.as_tensor(
np.load(self.smplx.cmap_vert_path)).float()
# get smpl_signs
query_points = projection(data_dict['samples_geo'],
data_dict['calib']).float()
pts_signs = 2.0 * (check_sign(smplx_verts.unsqueeze(0),
smplx_faces,
query_points.unsqueeze(0)).float() - 0.5).squeeze(0)
return_dict = {
'smpl_verts': smplx_verts,
'smpl_faces': smplx_faces,
'smpl_vis': smplx_vis,
'smpl_cmap': smplx_cmap,
'pts_signs': pts_signs
}
if smplx_dict is not None:
return_dict.update(smplx_dict)
if vis:
(xy, z) = torch.as_tensor(smplx_verts).to(
self.device).split([2, 1], dim=1)
smplx_vis = get_visibility(xy, z, torch.as_tensor(
smplx_faces).to(self.device).long())
T_normal_F, T_normal_B = self.render_normal(
(smplx_verts*torch.tensor([1.0, -1.0, 1.0])).to(self.device),
smplx_faces.to(self.device))
return_dict.update({"T_normal_F": T_normal_F.squeeze(0),
"T_normal_B": T_normal_B.squeeze(0)})
query_points = projection(data_dict['samples_geo'],
data_dict['calib']).float()
smplx_sdf, smplx_norm, smplx_cmap, smplx_vis = cal_sdf_batch(
smplx_verts.unsqueeze(0).to(self.device),
smplx_faces.unsqueeze(0).to(self.device),
smplx_cmap.unsqueeze(0).to(self.device),
smplx_vis.unsqueeze(0).to(self.device),
query_points.unsqueeze(0).contiguous().to(self.device))
return_dict.update({
'smpl_feat':
torch.cat(
(smplx_sdf[0].detach().cpu(),
smplx_cmap[0].detach().cpu(),
smplx_norm[0].detach().cpu(),
smplx_vis[0].detach().cpu()),
dim=1)
})
return return_dict
def load_smpl_voxel(self, data_dict):
smpl_verts, smpl_faces, pad_v_num, pad_f_num = self.compute_voxel_verts(
data_dict, self.noise_type,
self.noise_scale) # compute using smpl model
smpl_verts = projection(smpl_verts, data_dict['calib'])
smpl_verts *= 0.5
return {
'voxel_verts': smpl_verts,
'voxel_faces': smpl_faces,
'pad_v_num': pad_v_num,
'pad_f_num': pad_f_num
}
def get_sampling_geo(self, data_dict, is_valid=False, is_sdf=False):
mesh = data_dict['mesh']
calib = data_dict['calib']
# Samples are around the true surface with an offset
n_samples_surface = 4 * self.opt.num_sample_geo
vert_ids = np.arange(mesh.verts.shape[0])
thickness_sample_ratio = np.ones_like(vert_ids).astype(np.float32)
thickness_sample_ratio /= thickness_sample_ratio.sum()
samples_surface_ids = np.random.choice(vert_ids,
n_samples_surface,
replace=True,
p=thickness_sample_ratio)
samples_normal_ids = np.random.choice(vert_ids,
self.opt.num_sample_geo // 2,
replace=False,
p=thickness_sample_ratio)
surf_samples = mesh.verts[samples_normal_ids, :]
surf_normals = mesh.vert_normals[samples_normal_ids, :]
samples_surface = mesh.verts[samples_surface_ids, :]
# Sampling offsets are random noise with constant scale (15cm - 20cm)
offset = np.random.normal(scale=self.opt.sigma_geo,
size=(n_samples_surface, 1))
samples_surface += mesh.vert_normals[samples_surface_ids, :] * offset
# Uniform samples in [-1, 1]
calib_inv = np.linalg.inv(calib)
n_samples_space = self.opt.num_sample_geo // 4
samples_space_img = 2.0 * np.random.rand(n_samples_space, 3) - 1.0
samples_space = projection(samples_space_img, calib_inv)
# z-ray direction samples
if self.opt.zray_type and not is_valid:
n_samples_rayz = self.opt.ray_sample_num
samples_surface_cube = projection(samples_surface, calib)
samples_surface_cube_repeat = np.repeat(samples_surface_cube,
n_samples_rayz,
axis=0)
thickness_repeat = np.repeat(0.5 *
np.ones_like(samples_surface_ids),
n_samples_rayz,
axis=0)
noise_repeat = np.random.normal(scale=0.40,
size=(n_samples_surface *
n_samples_rayz, ))
samples_surface_cube_repeat[:,
-1] += thickness_repeat * noise_repeat
samples_surface_rayz = projection(samples_surface_cube_repeat,
calib_inv)
samples = np.concatenate(
[samples_surface, samples_space, samples_surface_rayz], 0)
else:
samples = np.concatenate([samples_surface, samples_space], 0)
np.random.shuffle(samples)
# labels: in->1.0; out->0.0.
if is_sdf:
sdfs = mesh.get_sdf(samples)
inside_samples = samples[sdfs < 0]
outside_samples = samples[sdfs >= 0]
inside_sdfs = sdfs[sdfs < 0]
outside_sdfs = sdfs[sdfs >= 0]
else:
inside = mesh.contains(samples)
inside_samples = samples[inside >= 0.5]
outside_samples = samples[inside < 0.5]
nin = inside_samples.shape[0]
if nin > self.opt.num_sample_geo // 2:
inside_samples = inside_samples[:self.opt.num_sample_geo // 2]
outside_samples = outside_samples[:self.opt.num_sample_geo // 2]
if is_sdf:
inside_sdfs = inside_sdfs[:self.opt.num_sample_geo // 2]
outside_sdfs = outside_sdfs[:self.opt.num_sample_geo // 2]
else:
outside_samples = outside_samples[:(self.opt.num_sample_geo - nin)]
if is_sdf:
outside_sdfs = outside_sdfs[:(self.opt.num_sample_geo - nin)]
if is_sdf:
samples = np.concatenate(
[inside_samples, outside_samples, surf_samples], 0)
labels = np.concatenate([
inside_sdfs, outside_sdfs, 0.0 * np.ones(surf_samples.shape[0])
])
normals = np.zeros_like(samples)
normals[-self.opt.num_sample_geo // 2:, :] = surf_normals
# convert sdf from [-14, 130] to [0, 1]
# outside: 0, inside: 1
# Note: Marching cubes is defined on occupancy space (inside=1.0, outside=0.0)
labels = -labels.clip(min=-self.sdf_clip, max=self.sdf_clip)
labels += self.sdf_clip
labels /= (self.sdf_clip * 2)
else:
samples = np.concatenate([inside_samples, outside_samples])
labels = np.concatenate([
np.ones(inside_samples.shape[0]),
np.zeros(outside_samples.shape[0])
])
normals = np.zeros_like(samples)
samples = torch.from_numpy(samples).float()
labels = torch.from_numpy(labels).float()
normals = torch.from_numpy(normals).float()
return {'samples_geo': samples, 'labels_geo': labels} |